Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040304    DOI: 10.1088/1674-1056/26/4/040304
GENERAL Prev   Next  

Spherical reconciliation for a continuous-variable quantum key distribution

Zhao Lu(卢钊)1, Jian-Hong Shi(史建红)1,2, Feng-Guang Li(李风光)1
1 Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China;
2 Science and Technology on Information Assurance Laboratory, Beijing 100072, China
Abstract  Information reconciliation is a significant step for a continuous-variable quantum key distribution (CV-QKD) system. We propose a reconciliation method that allows two authorized parties to extract a consistent and secure binary key in a CV-QKD protocol, which is based on Gaussian-modulated coherent states and homodyne detection. This method named spherical reconciliation is based on spherical quantization and non-binary low-density parity-check (LDPC) codes. With the suitable signal-to-noise ratio (SNR) and code rate of non-binary LDPC codes, spherical reconciliation algorithm has a high efficiency and can extend the transmission distance of CV-QKD.
Keywords:  continuous-variable quantum key distribution      quantization      spherical reconciliation  
Received:  06 August 2016      Revised:  10 November 2016      Published:  05 April 2017
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1304613 and 11204379).
Corresponding Authors:  Jian-Hong Shi     E-mail:

Cite this article: 

Zhao Lu(卢钊), Jian-Hong Shi(史建红), Feng-Guang Li(李风光) Spherical reconciliation for a continuous-variable quantum key distribution 2017 Chin. Phys. B 26 040304

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, December 10-12, 1984, New York, USA, p. 175
[2] Ralph T C 1999 Phys. Rev. A 61 103031
[3] Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595
[4] Gu Y B, Bao W S, Wang Y and Zhou C 2016 Chin. Phys. Lett. 33 040301
[5] Li J, Chen Y H, Pan Z S, Sun F Q, Li N and Li L L 2016 Acta Phys. Sin. 65 030302 (in Chinese)
[6] Yin Z Q, An X B and Han Z F 2015 Acta Phys. Sin. 64 140303 (in Chinese)
[7] Chen H, An X B, Wu J, Yin Z Q, Wang S, Chen W and Han Z F 2016 Chin. Phys. B 25 020305
[8] Li Y, Bao W S, Li H W, Zhou C and Wang Y 2016 Chin. Phys. B 25 010305
[9] Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
[10] Li Y, Bao W S, Li H W, Zhou C and Wang Y 2015 Chin. Phys. B 24 110307
[11] Jouguet P, Elkouss D and Kunz-jacques S 2014 Phys. Rev. A 90 042329
[12] Xia Z H, Wang X H, Sun X M and Wang Q 2015 IEEE Transactions on Parallel and Distributed Systems 27 340
[13] Fu Z J, Sun X M, Liu Q, Zhou L and Shu J G 2015 IEICE Transactions on Communications 98 190
[14] Fu Z J, Wu X L, Guan C W, Sun X M and Ren K 2016 IEEE Transactions on Information Forensics and Security 11 2706
[15] Elkouss D, Martinez-Mateo J and Martin V 2011 Quantum Inform. Comput. 11 226
[16] Du P Y, Bai Z L, Wang X Y and Li Y M 2013 Acta Sin. Quantum Opt. 19 129
[17] Li Y, Liao S K, Liang F T, Shen Q, Liang H and Peng C Z 2016 Chin. Phys. Lett. 33 30303
[18] Buttler W T, Torgerson J R and Lamoreaux S K 2002 Phys. Lett. A 299 38
[19] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[20] Grosshans F, Van A G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[21] Van Assche G, Cardinal J and Cerf N J 2004 IEEE Transactions on Information Theory 50 394
[22] Bai Z L, Wang X Y, Yang S S and Li Y M 2016 Sci. China-Phys., Mech. & Astron. 59 614201
[23] Leverrier A, Alléaume R, Boutros J, Zémor G and Grangier P 2008 Phys. Rev. A 77 042325
[24] Grosshans F and Grangier P 2002 Physics 3 4
[25] Davey M C, Mackay D 1998 IEEE Commun. Lett. 2 70
[26] Ankan E, Ul Hassan N, Lentmaier M and Montorsi G 2015 Journal of Communications and Networks 17 328
[27] Voicila A, Declercq D, Verdier F Fossorier M and Urard P 2010 IEEE Trans. Commun. 58 1365
[28] Sayir J 2014 Non-binary "LDPC decoding using truncated messages in the Walsh-Hadamard domain". International Symposium on Information Theory and ITS Applications, IEEE, p. 16-20
[29] Pacher C, Martinez-Mateo J, Duhme J, Gehring T and Furrer F 2016 arXiv: 1602.09140v1 [quant-ph]
[30] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov, E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin W and Grangier P 2007 Phys. Rev. A 76 042305
[31] Jouguet P, Kunz-Jacques S, and Leverrier A 2011 Phys. Rev. A 84 062317
[32] Wang C, Huang D, Huang P, Lin D K, Peng J Y and Zeng G H 2015 Sci. Rep. 5 14607
[33] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
[34] Silberhorn C, Ralph T C, Lütkenhaus N and Leuche G 2002 Phys. Rev. Lett. 89 167901
[35] Navascués M, Grosshans F and Acín A 2006 Phys. Rev. Lett. 97 190502
[1] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[2] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[3] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[4] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[5] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[6] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[7] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[8] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[9] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[10] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[11] ADC border effect and suppression of quantization error in the digital dynamic measurement
Li-Na Bai(白丽娜), Hai-Dong Liu(刘海东), Wei Zhou(周渭), Yong Zhang(张勇), Hong-Qi Zhai(翟鸿启), Zhen-Jian Cui(崔震健), Ming-Ying Zhao(赵明英), Xiao-Qian Gu(谷小倩), Bei-Ling Liu(刘蓓玲), Li-Bei Huang(黄李贝). Chin. Phys. B, 2017, 26(9): 090601.
[12] Electromagnetic field quantization and input-output relation for anisotropic magnetodielectric metamaterial
Dong Yun-Xia, Liu Chun-Ying. Chin. Phys. B, 2015, 24(6): 064206.
[13] s-parameterized Weyl transformation and the corresponding quantization scheme
Wang Ji-Suo, Meng Xiang-Guo, Fan Hong-Yi. Chin. Phys. B, 2015, 24(1): 014203.
[14] Mutual transformations between the P–Q,Q–P, and generalized Weyl ordering of operators
Xu Xing-Lei, Li Hong-Qi, Fan Hong-Yi. Chin. Phys. B, 2014, 23(3): 030305.
[15] Fractional charges and fractional spins for composite fermions in quantum electrodynamics
Wang Yong-Long, Lu Wei-Tao, Jiang Hua, Xu Chang-Tan, Pan Hong-Zhe. Chin. Phys. B, 2012, 21(7): 070501.
No Suggested Reading articles found!