Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037401    DOI: 10.1088/1674-1056/26/3/037401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Validation of the Wiedemann-Franz law in a granular s-wave superconductor in the nanometer scale

A Yousefvand, H Salehi, M Zargar Shoushtari
Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Abstract  

The present study tries to evaluate the validity of the Wiedemann-Franz law in a granular s-wave superconductor in the presence of concentrated impurities. By using Green's function method and the Kubo formula technique, three distinct contributions of the Aslamazov-Larkin, the Maki-Thompson and, the density of states are calculated for both the electrical conductivity and the thermal conductivity in a granular s-wave superconductor. It is demonstrated that these different contributions to the fluctuation conductivity depend differently on the tunneling because of their different natures. This study examines the transport in a granular superconductor system in three dimensions in the limit of large tunneling conductance, which makes it possible to ignore all localization effects and the Coulomb interaction. We find that the tunneling is efficient near the critical temperature and that there is a crossover to the characteristic behavior of a homogeneous system. When it is far from the critical temperature, the tunneling is not effective and the system behaves as an ensemble of real zero-dimensional grains. The results show that the Wiedemann-Franz law is violated in both temperature regions.

Keywords:  granular superconductor      s-wave      impurity vertex      fluctuation propagator  
Received:  27 September 2016      Revised:  23 December 2016      Accepted manuscript online: 
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  81.05.Rm (Porous materials; granular materials)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
  24.60.Ky (Fluctuation phenomena)  
Fund: 

Project supported by Shahid Chamran University of Ahvaz.

Corresponding Authors:  A Yousefvand     E-mail:  a_yoosef@yahoo.com

Cite this article: 

A Yousefvand, H Salehi, M Zargar Shoushtari Validation of the Wiedemann-Franz law in a granular s-wave superconductor in the nanometer scale 2017 Chin. Phys. B 26 037401

[1] Abrikosov A A 1988 Fundamentals of the Theory of Metals (North-Holland Amsterdam)
[2] Langer J S 1962 Phys. Rev. 128 110
[3] Schmid A 1966 Phys. Kond. Mater. 5 302
[4] Caroli C and Maki K 1967 Phys. Rev. 164 591
[5] Mowbray D J and Skolnick M S 2005 J. Phys. D 38 2059
[6] Ussishkin I 2003 Phys. Rev. B 68 024517
[7] Ebner C and Stroud D 1985 Phys. Rev. B 31 165
[8] Choi J and Jose J V 1989 Phys. Rev. Lett. 62 320
[9] Mowbray D J and Skolnick M S 2005 J. Phys. D 38 2059
[10] Murray C B, Norris D J and Bawendi 1993 J. Am. Chem. Soc. 115 8706
[11] Gaponenko S 1998 Optical Properties of Semiconductor Nanocrystals (Cambridge: Cambridge University Press)
[12] Beloborodov I S and Efetov K B 1999 Phys. Rev. Lett. 82 3332
[13] Efetov K B and Tschersich A 2002 Europhys. Lett. 59 114
[14] Efetov K B and Tschersich A 2002 Phys. Rev. B 67 174205
[15] Gerber A, Milner A, Deutscher G, Karpovsky M and Gadkikh A 1997 Phys. Rev. Lett. 78 4277
[16] Beloborodov I S, Lopatin A V, Vinokur V M and Efetov K B 2007 Rev. Mod. Phys. 79 469
[17] Galitski V M and Larkin A I 2001 Phys. Rev. B 63 174506
[18] Maki K 1986 Prog. Theor. Phys. 39 897
[19] Thompson R S 1970 Phys. Rev. B 1 327
[20] Asalamasov L G and Larkin A I 1968 Fiz. Tverd. Tela (Leningrad) 10 1104
[21] Kurland I L, Aleiner I L and Altshuler B L 2000 Phys. Rev. B 62 14886
[22] Blanter Y M 1996 Phys. Rev. B 54 12807
[23] Aleiner I L and Glazman L I 1998 Phys. Rev. B 57 9608
[24] Mahan G D 1990 Many-Particle Physics, 2nd edn. (New York: Plenum Press)
[25] Anderson P W 1964 Lectures on the Many-Body Problems (New York: Academic) Vol. 2
[26] Abrikosov A A, Gorkov L P and Dzyaloshinskii I E 1963 Methods of Quantum Field Theory in Statistical Physics (New Jersey: Prentice-Hall, Englewood Cliffs)
[27] Altshuler B L, Reizer M and Varlamov A A 1983 Soviet JEPT 57 1329
[28] Beloborodov I S and Efetov K B 1999 Ann. Phys. 8 775
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[3] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[4] Multi-wavelength continuous-wave Nd:YVO4 self-Raman laser under in-band pumping
Li Fan(樊莉), Xiao-Dong Zhao(赵孝冬), Yun-Chuan Zhang(张蕴川), Xiao-Dong Gu(顾晓东), Hao-Peng Wan(万浩鹏), Hui-Bo Fan(范会博), Jun Zhu(朱骏). Chin. Phys. B, 2019, 28(8): 084210.
[5] Influence of fluorescence time characteristics on the spatial resolution of CW-stimulated emission depletion microscopy
Haiyun Qin(秦海芸), Wei Zhao(赵伟), Chen Zhang(张琛), Yong Liu(刘勇), Guiren Wang(王归仁), Kaige Wang(王凯歌). Chin. Phys. B, 2018, 27(3): 037803.
[6] An efficient continuous-wave YVO4/Nd: YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode
Li Fan(樊莉), Weiqian Zhao(赵伟倩), Xin Qiao(乔鑫), Changquan Xia(夏长权), Lichun Wang(汪丽春), Huibo Fan(范会博), Mingya Shen(沈明亚). Chin. Phys. B, 2016, 25(11): 114207.
[7] Josephson current versus potential strength of the interface in ferromagnetic superconductors
Hamidreza Emamipour. Chin. Phys. B, 2014, 23(5): 057402.
[8] Finger capacitance of a terahertz photomixer in low-temperature-grown GaAs using the finite element method
Chen Long-Chao (陈龙超), Fan Wen-Hui (范文慧). Chin. Phys. B, 2012, 21(10): 104101.
[9] Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator
Li Bin(李斌), Ding Xin(丁欣), Sheng Quan(盛泉), Yin Su-Jia(殷苏嘉), Shi Chun-Peng(史春鹏), Li Xue(李雪), Yu Xuan-Yi(禹宣伊), Wen Wu-Qi(温午麒), and Yao Jian-Quan(姚建铨) . Chin. Phys. B, 2012, 21(1): 014207.
[10] Elastic scattering of sodium and cesium atoms at ultracold temperatures
Zhang Ji-Cai(张计才), Wang Ke-Dong(王克栋), Liu Yu-Fang(刘玉芳), and Sun Jin-Feng(孙金锋) . Chin. Phys. B, 2011, 20(9): 093401.
[11] High efficiency continuous-wave tunable signal output of an intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate
Ding Xin(丁欣), Sheng Quan(盛泉), Chen Na(陈娜), Yu Xuan-Yi(禹宣伊), Wang Rui(王睿), Zhang Heng(张衡), Wen Wu-Qi(温午麒), Wang Peng(王鹏), and Yao Jian-Quan(姚建铨). Chin. Phys. B, 2009, 18(10): 4314-4318.
[12] Performance of gain-switched all-solid-state quasi-continuous-wave tunable Ti:sapphire laser system
Ding Xin(丁欣), Zhang Heng(张衡), Wang Rui(王睿), Yu Xuan-Yi(禹宣伊), Wen Wu-Qi(温午麒), Zhang Bai-Gang(张百钢), Wang Peng(王鹏), and Yao Jian-Quan(姚建铨). Chin. Phys. B, 2008, 17(10): 3759-3764.
[13] Continuous-wave mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate
Ding Xin(丁欣), Zhang Shao-Min(张少敏), Ma Hong-Mei(马洪梅), Pang Ming(庞明), Yao Jian-Quan(姚建铨), and Li Zhuo(李卓). Chin. Phys. B, 2008, 17(1): 211-216.
[14] CONTINUOUS-WAVE LASER OSCILLATION OF Yb:FAP CRYSTALS AT A WAVELENGTH OF 1043nm
Yang Hui (杨辉), Zhao Zhi-wei (赵志伟), Zhang Jun (张军), Deng Pei-zhen (邓佩珍), Xu Jun (徐军), Wei Zhi-yi (魏志义), Zhang Jie (张杰). Chin. Phys. B, 2001, 10(12): 1136-1138.
No Suggested Reading articles found!