Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037104    DOI: 10.1088/1674-1056/26/3/037104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study

Wenbo Li(李文波)1, Ling Li(李玲)2, Fangfang Wang(王方方)2, Liu Zheng(郑柳)2, Jinghua Xia(夏经华)2, Fuwen Qin(秦福文)3, Xiaolin Wang(王晓琳)1, Yongping Li(李永平)2, Rui Liu(刘瑞)2, Dejun Wang(王德君)1, Yan Pan(潘艳)2, Fei Yang(杨霏)2,4
1 School of Electronic Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China;
2 Global Energy Interconnection Research Institute, Beijing 102211, China;
3 State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), Dalian University of Technology, Dalian 116024, China;
4 State key Laboratory of Advanced Power Transmission Technology, Beijing 102211, China
Abstract  The effect of phosphorus passivation on 4H-SiC(0001) silicon (Si) dangling bonds is investigated using ab initio atomistic thermodynamic calculations. Phosphorus passivation commences with chemisorption of phosphorus atoms at high-symmetry coordinated sites. To determine the most stable structure during the passivation process of phosphorus, a surface phase diagram of phosphorus adsorption on SiC (0001) surface is constructed over a coverage range of 1/9-1 monolayer (ML). The calculated results indicate that the 1/3 ML configuration is most energetically favorable in a reasonable environment. At this coverage, the total electron density of states demonstrates that phosphorus may effectively reduce the interface state density near the conduction band by removing 4H-SiC (0001) Si dangling bonds. It provides an atomic level insight into how phosphorus is able to reduce the near interface traps.
Keywords:  phosphorus passivation      silicon carbide      near interface traps      surface phase diagram  
Received:  11 November 2016      Revised:  19 December 2016      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  73.20.At (Surface states, band structure, electron density of states)  
  68.35.Dv (Composition, segregation; defects and impurities)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA052401), the National Natural Science Foundation of China (Grant No. 61474013), and the National Grid Science & Technology Project, China (Grant No. 5455DW150006).
Corresponding Authors:  Yan Pan, Fei Yang     E-mail:  panyan@geiri.sgcc.com.cn;yangsenji@163.com

Cite this article: 

Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏) Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study 2017 Chin. Phys. B 26 037104

[1] Ruff M, Mitlehner H and Helbig R 1994 IEEE Trans. Electron Devices 41 1040
[2] Nakamura D, Gunjishima I, Yamaguchi S, Ito T, Okamoto A, Kondo H, Onda S and Takatori K 2004 Nature 430 1009
[3] Melinon P, Masenelli B, Tournus F and Perez A 2007 Nat. Mater. 6 479
[4] Presser V and Nickel K G 2008 Crit. Rev. Solid State Mater. Sci. 33 1
[5] Cooper J A 1997 Phys. Status Solidi A 162 305
[6] Ventra M D and Pantelides S T 1999 Phys. Rev. Lett. 83 1624
[7] Afanasév V V, Bassler M, Pensl G and Schultz M 1997 Phys. Status Solidi A 162 321
[8] Afanasév V V and Stesmans A 1997 Phys. Rev. Lett. 78 2437
[9] Knaup J M, Deák P, Frauenheim T, Gali A, Hajnal Z and Choyke W J 2005 Phys. Rev. B 71 235321
[10] Zhu Q, Huang L, Li W, Li S and Wang D 2011 Appl. Phys. Lett. 99 082102
[11] Jia Y, Lv H, Niu Y, Li L, Song Q, Tang X, Li C, Zhao Y, Xiao L, Wang L, Tang G, Zhang Y and Zhang Y 2016 Phys. B 25 097101
[12] Li H, Dimitrijev S, Harrison H B and Sweatman D 1997 Appl. Phys. Lett. 70 2028
[13] Dhar S, Wang S, Williams J R, Pantelides S T and Feldman L C 2005 MRS Bull. 30 288
[14] Chung G Y, Tin C C, Williams J R, McDonald K, Di Ventra M, Pantelides S T, Feldman L C and Weller R A 2000 Appl. Phys. Lett. 76 1713
[15] Yano H, Hirao T, Kimoto T and Matsunami H 2001 Appl. Phys. Lett. 78 374
[16] Wang S, Dhar S, Wang S, Ahyi A C, Franceschetti A, Williams J R, Feldman L C and Pantelides S T 2007 Phys. Rev. Lett. 98 026101
[17] Deák P, Knaup J M, Hornos T, Thill C, Gali A and Frauenheim T 2007 J. Phys. D: Appl. Phys. 40 6242
[18] Ashman C R, Först C J, Schwarz K and Blöchl P E 2004 Phys. Rev. B 69 075309
[19] Pennington G and Ashman C R 2007 Appl. Phys. Lett. 91 072106
[20] Ashman C R and Pennington G 2008 Surf. Sci. 602 3617
[21] Ashman C R and Pennington G 2009 Phys. Rev. B 80 085318
[22] Okamoto D, Yano H, Hatayama T and Fuyuki T 2010 Appl. Phys. Lett. 96 203508
[23] Okamoto D, Yano H, Hirata K, Hatayama T and Fuyuki T 2010 IEEE Electron Device Lett. 31 710
[24] Okamoto D, Yano H, Kotake S, Hirata K, Hatayama T and Fuyuki T, 2010 MRS Symp. Proc. 1246-B06-06
[25] Okamoto D, Yano H, Hatayama T and Fuyuki T 2012 Materials Science Forum 717-720 733
[26] Okamoto D, Yano H, Kotake S, Hirata K, Hatayama T and Fuyuki T 2011 Materials Science Forum 679-680 338
[27] Cantin J L, Von Bardeleben H J, Shishkin Y, Ke Y, Devaty R P and Choyke W J 2004 Phys. Rev. Lett. 92 015502
[28] Lenahan P M and Conley J F 1998 J. Vac. Sci. Technol. B 16 2134
[29] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892
[31] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[5] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[6] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[7] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[8] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[9] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
[10] Investigations on mesa width design for 4H-SiC trench super junction Schottky diodes
Xue-Qian Zhong(仲雪倩), Jue Wang(王珏), Bao-Zhu Wang(王宝柱), Heng-Yu Wang(王珩宇), Qing Guo(郭清), Kuang Sheng(盛况). Chin. Phys. B, 2018, 27(8): 087102.
[11] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[12] Shortening turn-on delay of SiC light triggered thyristor by 7-shaped thin n-base doping profile
Xi Wang(王曦), Hong-Bin Pu(蒲红斌), Qing Liu(刘青), Li-Qi An(安丽琪). Chin. Phys. B, 2018, 27(10): 108502.
[13] Injection modulation of p+–n emitter junction in 4H–SiC light triggered thyristor by double-deck thin n-base
Xi Wang(王曦), Hongbin Pu(蒲红斌), Qing Liu(刘青), Chunlan Chen(陈春兰), Zhiming Chen(陈治明). Chin. Phys. B, 2017, 26(10): 108505.
[14] Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers
Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平). Chin. Phys. B, 2016, 25(8): 087201.
[15] Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method
Wang Wei-Jie (王卫杰), Zhao Zhen-Guo (赵振国), Zhao Yi (赵艺), Zhou Hai-Jing (周海京), Fu Ce-Ji (符策基). Chin. Phys. B, 2015, 24(9): 094213.
No Suggested Reading articles found!