Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 028103    DOI: 10.1088/1674-1056/26/2/028103

Geometrically induced π-band splitting in graphene superlattices

Yanpei Wei(魏艳佩), Tiantian Jia(贾甜甜), Gang Chen(陈刚)
Department of Physics, University of Jinan, Jinan 250022, China
Abstract  According to band folding analyses, the graphene superlattices can be differed by whether the Dirac points are folded to Γ point or not. In previous studies, the inversion symmetry preserved defects open bandgap in the former superlattices while they cannot in the latter ones. In this paper, by using density functional theory with generalized gradient approximation, we have carefully studied the electronic properties of the latter graphene superlattices, in which the defects would induce π-band splitting to get the πa1-πa2 and πz1-πz2 band sets. Based on our detailed studies, such splitting could be attributed to the geometrically induced bond-symmetry breaking. In addition, these band sets could be shifted toward each other by the methodology of strain engineering. A bandgap would be opened once the band sets start to overlap. Then, its gap width could be continuously enlarged by enhancing strain until reaching the maximum value determined by the defect density. These studies contribute to the bandstructure engineering of graphene-based nanomaterials, which would be interesting to call for further investigations on both theory and experiment.
Keywords:  first-principles calculation      novel two-dimensional nanostructure      bandgap opening and tuning  
Received:  25 August 2016      Revised:  20 November 2016      Published:  05 February 2017
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.05.Rm (Porous materials; granular materials)  
  81.05.ue (Graphene)  
Fund: Project jointly supported by the Natural Science Foundation of Shandong Province (Grant NO. TSHW20101004) and the National Natural Science Foundation of China (Grant Nos. 11374128 and 11674129).
Corresponding Authors:  Gang Chen     E-mail:

Cite this article: 

Yanpei Wei(魏艳佩), Tiantian Jia(贾甜甜), Gang Chen(陈刚) Geometrically induced π-band splitting in graphene superlattices 2017 Chin. Phys. B 26 028103

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867
[3] Xiu S L, Gong L, Wang V, Liang Y Y, Chen G and Kawazoe Y 2014 J. Phys. Chem. C 118 8174
[4] Xiu S L, Zhemg M M, Zhao P, Zhang Y, Liu H Y, Li S J, Chen G and Kawazoe Y 2014 Carbon 79 646
[5] Agrawal B K and Agrawal S 2013 Physica E 50 102
[6] Sun M, Tang W, Ren Q, Zhao Y, Wang S, Yu J, Du Y and Hao Y 2016 Physica E 80 142
[7] Denis P A, Huelmo C P and Martins A S 2016 J. Phys. Chem. C 120 7103
[8] Nascimento R, Martins J da R, Batista R J C and Chacham H 2015 J. Phys. Chem. C 119 5055
[9] Xu L, Wang L, Huang W, Li X and Xiao W 2014 Physica E 63 259
[10] Chen Z, Lin Y M, Rooks M J and Avouris P 2007 Physica E 40 228
[11] Jia T T, Zheng M M, Fan X Y, Su Y, Li S J, Liu H Y, Chen G and Kawazoe Y 2016 Sci. Rep. 6 18869
[12] Bai J W, Zhong X, Jiang S, Huang Y and Duan X F 2010 Nat. Nanotechnol. 5 190
[13] Kim M, Safrom N S, Han E, Arnold M S and Gopalan P 2010 Nano Lett. 10 1125
[14] Liang X, Jung Y S, Wu S, Ismach A, Olynick D L, Cabrini S and Bokor J 2010 Nano Lett. 10 2454
[15] Liu L Z, Tian S B, Long Y Z, Li W X, Yang H F, Li J J and Gu C Z 2014 Vacuum 105 21
[16] Yang Y, Cao J X and Yang W 2008 Chin. Phys. B 17 1881
[17] Guo Y H, Cao J X and Xu B 2016 Chin. Phys. B 25 017101
[18] Wang H B, Su Y and Chen G 2014 Chin. Phys. B 23 018103
[19] Hu Q K, Wang H Y, Wu Q H, He J L and Zhang G L 2011 Chin. Phys. Lett. 28 126101
[20] Wang J, Duan X M and Zhang P 2016 Chin. Phys. B 25 057301
[21] Singleton J 2001 Band Theory and Electronic Properties of Solids (Oxford: Oxford University Press)
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[25] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[26] Porezg D, Frauenheim Th, Kühler Th, Seifert G and Kaschner R 1995 Phys. Rev. B 51 12947
[27] Choi S M, Jhi S H and Son Y W 2010 Phys. Rev. B 81 081407
[28] Miyake T and Saito S 2005 Phys. Rev. B 72 073404
[29] Li J, Fan X, Wei Y, Wang V and Chen G 2016 Chem. Phys. Lett. 660 244
[30] Li J, Wei Y, Fan X, Wang H, Song Y, Chen G, Liang Y, Wang V and Kawazoe Y 2016 J. Mater. Chem. C 4 9613
[1] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[2] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[3] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[6] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[7] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[8] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[9] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[10] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[11] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[12] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[13] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[14] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[15] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
No Suggested Reading articles found!