Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027701    DOI: 10.1088/1674-1056/26/2/027701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition

Xue-Li Ma(马雪丽)1,3, Hong Yang(杨红)1,3, Jin-Juan Xiang(项金娟)1,3, Xiao-Lei Wang(王晓磊)1,3, Wen-Wu Wang(王文武)1,3, Jian-Qi Zhang(张建齐)2, Hua-Xiang Yin(殷华湘)1,3, Hui-Long Zhu(朱慧珑)1,3, Chao Zhao(赵 超)1,3
1 Integrated Circuit Advanced Process R & D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 National Center for Nanoscience and Technology, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

In this work, ultrathin pure HfO2 and Al-doped HfO2 films (about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO2 and Al-doped HfO2 films are both amorphous. After 550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO2 film while the Al-doped HfO2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.

Keywords:  Al-doped HfO2 ultrathin film      phase transition      thermodynamics      kinetics  
Received:  14 October 2016      Revised:  22 November 2016      Published:  05 February 2017
PACS:  77.55.D-  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  82.60.Nh (Thermodynamics of nucleation)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA016501) and the National Natural Science Foundation of China (Grant Nos. 61574168 and 61504163).

Corresponding Authors:  Wen-Wu Wang     E-mail:  wangwenwu@ime.ac.cn

Cite this article: 

Xue-Li Ma(马雪丽), Hong Yang(杨红), Jin-Juan Xiang(项金娟), Xiao-Lei Wang(王晓磊), Wen-Wu Wang(王文武), Jian-Qi Zhang(张建齐), Hua-Xiang Yin(殷华湘), Hui-Long Zhu(朱慧珑), Chao Zhao(赵 超) Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition 2017 Chin. Phys. B 26 027701

[1] Chen Y H, Chen C Y, Cho C L, Hsieh C H, Wu Y C, Chang-Liao K S and and Wu Y H 2015 Proceedings of IEDM Tech. Dig., December 7-9, 2015, Washington, D.C., USA, p. 576
[2] Wu C Y, Hsieh C H, Lee C W and Wu Y H 2015 Appl. Phys. Lett. 106 053508
[3] Cisneros-Morales M C and Aita C R 2011 Appl. Phys. Lett. 98 051909
[4] Fu C H, Chang-Liao K S, Li C C, Ye Z H, Hsu F M, Wang T K, Lee Y J and Tsai M J 2012 Appl. Phys. Lett. 101 032105
[5] Bethge O, Abermann S, Henkel C and Bertagnolli E 2009 Thin Solid Films 517 5543
[6] Choi J H, Mao Y and Chang J P 2011 Mater. Sci. Eng. R 72 97
[7] Robertson J 2008 J. Appl. Phys. 104 124111
[8] Zhao X Y and Vanderbilt D 2002 Phys. Rev. B 65 233106
[9] Tomida K, Kita K and Toriumi A 2006 Appl. Phys. Lett. 89 142902
[10] Kita K, Kyuno K and Toriumi A 2005 Appl. Phys. Lett. 86 102906
[11] Park T J, Kim J H, Jang J H, Lee C K, Na K D, Lee S Y, Jung H S, Kim M, Han S and Hwang C S 2010 Chem. Mater. 22 4175
[12] Park P K and Kang S W 2006 Appl. Phys. Lett. 89 192905
[13] Ragnarsson L A, Adelmann C, Higuchi Y, Opsomer K, Veloso A, Chew S A, Röhr E, Vecchio E, Shi X P, Devriendt K, Sebaai F, Kauerauf T, Pawlak M A, Schram T, Elshocht S V, Horiguchi N and Thean A 2012 Proceedings of VLSI Tech. Dig., June 12-15, 2012, Honolulu, USA, p. 27
[14] Adelmann C, Schram T, Chew S A, Woicik J C, Brizzi S, Tallarida M, Schmeisser D, Horiguchi N, Elshocht S V and Ragnarsson L A 2014 Appl. Phys. Lett. 104 122906
[15] Yang Y, Zhu W J, Ma T P and Stemmer S 2004 J. Appl. Phys. 95 3772
[16] Govindarajan S, Böscke T S, Sivasubramani P, Kirsch P D, Lee B H, Tseng H H, Jammy R, Schröder U, Ramanathan S and Gnade B E 2007 Appl. Phys. Lett. 91 062906
[17] Hackley J C, Gougousi T and Demaree J D 2007 J. Appl. Phys. 102 034101
[18] Kim H, Lee H B R and Maeng W J 2009 Thin Solid Films 517 2563
[19] Yu H Y, Li M F and Kwong D L 2004 Thin Solid Films 462-463 110
[20] Zhu W, Ma T P, Tamagawa T, Di Y, Kim J, Carruthers R, Gibson M and Furukawa T 2001 Proceedings of IEDM Tech. Dig., December 2-5, 2001, Washington, D.C., USA, p. 20.4.1
[21] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[22] STACY D W and WILDER D R 1975 J. Am. Ceram. Soc. 58 285
[23] Mittemeijer E J 2011 Fundamentals of Materials Science (Berlin/Heidelberg: Springer-Verlag) pp. 371-380
[24] Gottstein G 2004 Physical Foundations of Materials Science (Berlin/Heidelberg: Springer-Verlag) pp. 389-422
[25] Gutiérrez G and Johansson B 2002 Phys. Rev. B 65 104202
[26] Wang J and Li H P and Stevens R 1992 J. Mater. Sci. 27 5397
[27] Lee C K, Cho E, Lee H S, Hwang C S and Han S 2008 Phys. Rev. B 78 012102
[28] Saitoh M, Mizoguchi T, Tohei T and Ikuhara Y 2012 J. Appl. Phys. 112 084514
[1] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim‡. Chin. Phys. B, 2021, 30(1): 017201.
[2] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[3] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[6] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[7] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[8] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[9] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[10] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[11] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[12] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[13] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[14] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[15] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
No Suggested Reading articles found!