Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 026502    DOI: 10.1088/1674-1056/26/2/026502
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene

Mohsen Yarmohammadi
Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Abstract  The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states (DOS) and electronic heat capacity (EHC) for four hydrogenated structures, including monolayer chair-like, table-like, bilayer AA- and finally AB-stacked graphene. After hydrogenation, monolayer graphene and bilayer graphene are behave as semiconducting systems owning a wide direct band gap and this means that all orbitals have several states around the Fermi level. The energy gap in DOS and Schottky anomaly in EHC curves of these structures are compared together illustrating the maximum and minimum band gaps are appear for monolayer chair-like and bilayer AA-stacked graphane, respectively. In spite of these, our findings show that the maximum and minimum values of Schottky anomaly appear for hydrogenated bilayer AA-stacked and monolayer table-like configurations, respectively.
Keywords:  hydrogenated monolayer and bilayer graphene      Harrison model      electronic heat capacity      density of states      Green's function  
Received:  12 October 2016      Revised:  11 November 2016      Accepted manuscript online: 
PACS:  65.40.Ba (Heat capacity)  
  73.22.Pr (Electronic structure of graphene)  
  65.80.Ck (Thermal properties of graphene)  
  74.20.Pq (Electronic structure calculations)  
Corresponding Authors:  Mohsen Yarmohammadi     E-mail:  m.yarmohammadi69@gmail.com

Cite this article: 

Mohsen Yarmohammadi Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene 2017 Chin. Phys. B 26 026502

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[4] Zhang Y, Tan T, Stormer H L and Kim P 2005 Nature 438 201
[5] Geim A K 2009 Science 324 1530
[6] Avouris P 2010 Nano Lett. 10 4285
[7] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[8] Yarmohammadi M and Zareyan M 2016 Chin. Phys. B 25 068105
[9] Semenoff G W 1984 Phys. Rev. Lett. 53 2449
[10] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[11] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[12] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, et al. 2009 Science 323 610
[13] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[14] Oostinga J B, Heersche H B, Liu X, Morpurgo A F and Vandersypen l M K 2007 Nat. Mater. 7 151
[15] Choi S M, Jhi S H and Son Y W 2010 Nano Lett. 10 3486
[16] Yi K S, Kim D, Park K S 2007 Phys. Rev. B 76 115410
[17] Balandin A A 2011 Nat. Mater. 10 569
[18] Im H, Kim J 2012 Carbon 50 5429
[19] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A and Ruoff R S 2012 Nat. Mater. 11 203
[20] Rezania H and Yarmohammadi M 2016 AIP Adv. 6 075121
[21] Yarmohammadi M 2016 Solid State Commun. 234 14
[22] Gharekhanlou B, Tousaki S B and Khorasani S 2010 Phys. Conf. Ser 248 012061
[23] Gharekhanlou B and Khorasani S 2010 Electron Dev. 57 209
[24] Savini A, Ferrari C and Giustino F 2010 Phys. Rev. Lett. 105 037002
[25] Saito S, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
[26] Zolyomi V, Wallbank J R and Falko V I 2014 2D Mater. 1 011005
[27] Grassi R, Low T and Lundstrom M 2011 Nano Lett. 11 4574
[28] Harrison A W 1989 Structure and the Properties of Solids (New York: Dover)
[29] Kaxiras E 2003 Atomic and Electronic Structure of Solids (Cambridge: Cambridge University Press)
[30] Grosso G and Parravicini G P 2014 Solid State Physics, 2nd edn. (Academic Press)
[31] Mahan G D 1993 Many Particle Physics (New York: Plenum Press)
[32] Economou E N 2006 Green's Functions in Quantum Physics, 3rd edn. (Berlin/Heidelberg: Springer-Verlag)
[33] Kittle C 2004 Introduction to Solid State Physics, 8th edn. (New York: Wiley)
[34] Sahin H, Ataca C and Ciraci S 2009 Appl. Phys. Lett. 95 222510
[35] Pashangpour M and Ghaffari V 2013 J. Theor. Appl. Phys. 7 9
[36] Yarmohammadi M 2016 Phys. Lett. A 380 4062
[37] Zhang Y, Hu C H, Wen Y H, Wu S Q and Zhu Z Z 2011 New J. Phys. 13 063047
[38] Tari A 2003 The Specific Heat of Matter at Low Temperatures (Imperial College Press) p. 250
[39] Pathria R K 1997 Statistical Mechanics (London: Oxford Press)
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[3] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[4] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[5] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[6] Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study
Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永). Chin. Phys. B, 2019, 28(11): 116301.
[7] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[8] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
[9] The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombic M3N4 (M=Si, Ge, Sn): A first-principles study
Dong Chen(陈东), Ke Cheng(程科), Bei-Ying Qi(齐蓓影). Chin. Phys. B, 2017, 26(4): 046303.
[10] Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations
M A Ali, M R Khatun, N Jahan, M M Hossain. Chin. Phys. B, 2017, 26(3): 033102.
[11] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[12] Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6
Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云). Chin. Phys. B, 2016, 25(6): 063102.
[13] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[14] Lattice structures and electronic properties of WZ-CuInS2/WZ-CdS interface from first-principles calculations
Hong-Xia Liu(柳红霞), Fu-Ling Tang(汤富领), Hong-Tao Xue(薛红涛), Yu Zhang(张宇), Yu-Wen Cheng(程育汶), Yu-Dong Feng(冯煜东). Chin. Phys. B, 2016, 25(12): 123101.
[15] Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations
Yuan Ye (袁野), Xu Run (徐闰), Xu Hai-Tao (徐海涛), Hong Feng (洪峰), Xu Fei (徐飞), Wang Lin-Jun (王林军). Chin. Phys. B, 2015, 24(11): 116302.
No Suggested Reading articles found!