Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 023401    DOI: 10.1088/1674-1056/26/2/023401

Optical potential approach for positron scattering by metastable 23S state of helium

Xi-Gang Wu(吴锡刚)1, Yong-Jun Cheng(程勇军)2, Fang Liu(刘芳)3, Ya-Jun Zhou(周雅君)2
1 Academy of Physical Science and Technology and School of Applied Foreign Languages, Heilongjiang University, Harbin 150080, China;
2 Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, China;
3 Department of Material Physics, Harbin University of Science and Technology, Harbin 150080, China

The momentum space coupled channels optical (CCO) method for positron scattering has been extended to study the scattering of positrons by metastable helium for impact energies in the range from the positronium threshold up to high energies. Both the positronium formation and ionization continuum channels are included in the calculations via a complex equivalent local potential. The positronium formation, ionization, elastic and 23S-23P excitation, and total scattering cross sections are all presented and compared with the available information.

Keywords:  positron      excited      helium      positronium formation  
Received:  26 September 2016      Revised:  31 October 2016      Published:  05 February 2017
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  34.80.Uv (Positron scattering)  
  34.80.Lx (Recombination, attachment, and positronium formation)  

Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. 12541160).

Corresponding Authors:  Yong-Jun Cheng     E-mail:

Cite this article: 

Xi-Gang Wu(吴锡刚), Yong-Jun Cheng(程勇军), Fang Liu(刘芳), Ya-Jun Zhou(周雅君) Optical potential approach for positron scattering by metastable 23S state of helium 2017 Chin. Phys. B 26 023401

[1] Surko C M, Gribakin G F and Buckman S J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R57
[2] Utamuratov R, Kadyrov A S, Fursa D V, Bray I and Stelbovics A T 2010 Phys. Rev. A 82 042705
[3] Christophorou L G and Olthoff J K 2001 Adv. At. Mol. Opt. Phys. 44 155
[4] Uhlmann L J, Dall R G, Truscoff A G, Hoogerland M D, Beldwin K G H and Buckman S J 2005 Phys. Rev. Lett. 94 173201
[5] Zhou Y, Ratnavelu K and McCarthy I E 2005 Phys. Rev. A 71 042703
[6] Nan G, Zhou Y and Ke Y 2004 Chin. Phys. Lett. 21 2406
[7] Kothari H N and Joshipura K N 2010 Chin. Phys. B 19 103402
[8] Mandal P, Guha S and Sil N C 1979 J. Phys. B: At. Mol. Phys. 12 2913
[9] Igarashi A and Toshima N 1992 Phys. Lett. A 164 70
[10] Schultz D R and Olson R E 1988 Phys. Rev. A 38 1866
[11] Champell C P, McAlinden M T, Kernoghan A A and Walters H R J 1998 Nucl. Instrum. Phys. Res. B 143 41
[12] Hewitt R N, Noble C P and Bransden B H 1992 J. Phys. B: At. Mol. Opt. Phys. 25 557
[13] Mitroy J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L263
[14] Kodysov A S and Bray Igor 2002 Phys. Rev. A 66 012710
[15] Hanssen J, Hervieux P A, Fojon F A and Rivarola R D 2000 Phys. Rev. A 63 012705
[16] Bartschat K 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L527
[17] Gribakin F and Ludlow J 2004 Phys. Rev. A 70 032720
[18] Cheng Y and Zhou Y 2007 Phys. Rev. A 76 012704
[19] McCarthy I E and Stelbovics A T 1980 Phys. Rev. A 22 502
[20] McCarthy I E and Zhou Y 1994 Phys. Rev. A 49 4597
[21] Cheshire I M 1964 Proc. Phys. Soc. 83 227
[22] Mitroy J, Bromley M W J and Ryzhikh G G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 R81
[23] Dzuba Y A, Flanbaum V V, Gribakin G F and King W A 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3151
[24] Rienzi J D and Drachman R J 2006 Phys. Rev. A 73 012703
[25] Wilson W G and Williams W L 1976 J. Phys. B: At. Mol. Phys. 9 423
[26] Neynaber R H, Trujillo S M, Marino L Land Rothe E W 1964 Atomic Collision Processes: Proceedings of the Third International Conference on the Physics of Electronic and Atomic Collisions, July 22-26, 1963
[27] Fursa D and Bray I 1997 J. Phys. B: At. Mol. Opt. Phys. 30 757
[28] Wang Y C, Zhou Y, Cheng Y, Ratnavelu K and Ma J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045201
[1] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[2] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[3] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[4] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[5] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[6] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
[7] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[8] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[9] Study of highly excited vibrational dynamics of HCP integrable system with dynamic potential methods
Aixing Wang(王爱星), Lifeng Sun(孙立风), Chao Fang(房超), Yibao Liu(刘义保). Chin. Phys. B, 2020, 29(1): 013101.
[10] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[11] Effects of helium irradiation dose and temperature on the damage evolution of Ti3SiC2 ceramic
Hua-Hai Shen(申华海), Xia Xiang(向霞), Hai-Bin Zhang(张海斌), Xiao-Song Zhou(周晓松), Hong-Xiang Deng(邓洪祥), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2019, 28(7): 076104.
[12] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[13] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[14] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[15] Effect of microstructure on 3He migration in TiT1.9 films
Haifeng Wang(王海峰), Shuming Peng(彭述明), Wei Ding(丁伟), Huahai Shen(申华海), Weidu Wang(王维笃), Xiaosong Zhou(周晓松), Xinggui Long(龙兴贵). Chin. Phys. B, 2018, 27(9): 096103.
No Suggested Reading articles found!