Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 128403    DOI: 10.1088/1674-1056/25/12/128403

Cognitive radio adaptation for power consumption minimization using biogeography-based optimization

Pei-Han Qi(齐佩汉)1, Shi-Lian Zheng(郑仕链)1,2, Xiao-Niu Yang(杨小牛)1,2, Zhi-Jin Zhao(赵知劲)3
1. School of Telecommunications Engineering, Xidian University, Xi'an 710071, China;
2. Science and Technology on Communication Information Security Control Laboratory, Jiaxing 314033, China;
3. School of Telecommunications, Hangzhou Dianzi University, Hangzhou 310018, China

Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications.

Keywords:  cognitive radio      power consumption      adaptation      optimization  
Received:  29 January 2015      Revised:  24 July 2016      Published:  05 December 2016
PACS:  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  

Project supported by the National Natural Science Foundation of China (Grant No. 61501356), the Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101), and the Postdoctoral Fund of Shaanxi Province, China.

Corresponding Authors:  Shi-Lian Zheng     E-mail:

Cite this article: 

Pei-Han Qi(齐佩汉), Shi-Lian Zheng(郑仕链), Xiao-Niu Yang(杨小牛), Zhi-Jin Zhao(赵知劲) Cognitive radio adaptation for power consumption minimization using biogeography-based optimization 2016 Chin. Phys. B 25 128403

[1] Haykin S 2005 IEEE Journal on Selected Areas in Communications 23 201
[2] Filin S, Harada H, Murakami H and Ishizu K 2011 IEEE Commun. Mag. 49 82
[3] Rondeau T W, Rieser C J and Bostian C W 2004 Software Defined Radio Forum Technical Conference, November 11-14, 2004, Virginia, USA, p. 3
[4] Zhao Z J, Zheng S L, Shang J N and Kong X Z 2007 Acta Phys. Sin. 56 6760 (in Chinese)
[5] Zu Y X and Zhou J 2012 Chin. Phys. B 21 019501
[6] Hauris J F 2007 Proceedings of the 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, June 20-23, 2007, Jacksonville, USA, p. 427
[7] Newman T R, Barker B A, Wyglinski A M, Agah A, Evans J B and Minden G J 2007 Wireless Communications and Mobile Computing 7 1129
[8] Baynast A D, Mähönen P and Petrova M 2008 Computer Networks 52 778
[9] Fathy R A, AbdelHafez A A and Zekry A 2013 Int. J. Comput. Appl. 64 53
[10] Zhao Z, Xu S, Zheng S and Shang J 2009 Wireless Communications and Mobile Computing 9 875
[11] Chen J C and Wen C K 2010 IEEE Commun. Lett. 14 629.
[12] Pradhan P M 2011 International Conference on Energy, Automation and Signal, December 28-30, 2011, Bhubaneswar, India, p. 1
[13] Pradhan P M and Panda G 2014 Ad Hoc Networks 17 129
[14] Clancy C, Hecker J, Stuntebeck E and O'Shea T 2007 IEEE Wireless Commun. 14 47
[15] He A, Gaeddert J, Bae K, Newman T R, Reed J H, Morales L and Pard C 2009 ACM Mobile Comput. Commun. Rev. 13 37
[16] Volos H I and Michael Buehrer R 2010 IEEE Trans. Wireless Commun. 9 2902
[17] He A, Ammanna A, Tsou T, Chen X, Datla D, Gaeddert J, Newman T R, Hasan S, Volos H I, Reed J H and Bose T 2011 J. Commun. 6 340
[18] Gür G and Alagöz F 2011 IEEE Network 25 50
[19] Cao S, Qian L, Vaman D R and Qu Q 2007 IEEE International Conference on Communications, June 24-28, 2007, Glasgow, Scotland, p. 3980
[20] Naeem M, Illanko K, Karmokar A, Anpalagan A and Jaseemuddin M 2013 IET Commun. 7 1279
[21] He A, Srikanteswara S, Reed J H, Chen X, Tranter W H, Bae K K and Sajadieh M 2008 IEEE Internatioanl Performance, Computing and Communications Conference, December 7-9, 2008, Austin, USA, p. 372
[22] He A, Srikanteswara S, Bae K K, Reed J H, Tranter W H 2010 IEEE Trans. Cosumer Electron. 56 1814
[23] Yucek T and Arslan H 2009 IEEE Communications Surveys & Tutorials 11 116
[24] Sun H, Nallanathan A, Wang C X and Chen Y 2013 IEEE Wireless Communications 20 74
[25] Simon D 2008 IEEE Transactions on Evolutionary Computation 12 702
[26] Simon D 2011 Appl. Soft Comput. 11 5652
[27] Ma H 2010 Inform. Sci. 180 3444
[28] Goldberg D 1989 Genetic Algorithms in Search, Optimization, and Machine Learning (Massachusetts:Addison-Wesley) pp.141-150
[29] Cordeiro C, Challapali K, Birru D and Sai Shankar N 2005 Proceedings of 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, November 2005, Baltimore, USA, p. 328
[1] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[2] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[3] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[4] An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing
Qing Hu(胡庆), Boyi Dong(董博义), Lun Wang(王伦), Enming Huang(黄恩铭), Hao Tong(童浩), Yuhui He(何毓辉), Ming Xu(徐明), Xiangshui Miao(缪向水). Chin. Phys. B, 2020, 29(7): 070701.
[5] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[6] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[7] Optimization of a magneto-optic trap using nanofibers
Xin Wang(王鑫), Li-Jun Song(宋丽军), Chen-Xi Wang(王晨曦), Peng-Fei Zhang(张鹏飞), Gang Li(李刚), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(7): 073701.
[8] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[9] Investigation and optimization of sampling characteristics of light field camera for flame temperature measurement
Yudong Liu(刘煜东), Md. Moinul Hossain, Jun Sun(孙俊), Biao Zhang(张彪), Chuanlong Xu(许传龙). Chin. Phys. B, 2019, 28(3): 034207.
[10] Energy-optimal problem of multiple nonholonomic wheeled mobile robots via distributed event-triggered optimization algorithm
Ying-Wen Zhang(张潆文), Jin-Huan Wang(王金环), Yong Xu(徐勇), De-Dong Yang(杨德东). Chin. Phys. B, 2019, 28(3): 030501.
[11] Baseline optimization for scalar magnetometer array and its application in magnetic target localization
Li-Ming Fan(樊黎明), Quan Zheng(郑权), Xi-Yuan Kang(康曦元), Xiao-Jun Zhang(张晓峻), Chong Kang(康崇). Chin. Phys. B, 2018, 27(6): 060703.
[12] Optimization of endcap trap for single-ion manipulation
Yuan Qian(钱源), Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Ke-Lin Gao(高克林). Chin. Phys. B, 2018, 27(6): 063701.
[13] Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method
Hui Pan(潘辉), Feng Jia(贾峰), Zhen-Yu Liu(刘震宇), Maxim Zaitsev, Juergen Hennig, Jan G Korvink. Chin. Phys. B, 2018, 27(5): 050201.
[14] Particle swarm optimization and its application to the design of a compact tunable guided-mode resonant filter
Dan-Yan Wang(王丹燕), Qing-Kang Wang(王庆康). Chin. Phys. B, 2018, 27(3): 037801.
[15] Evolutionary algorithm for optimization of multilayer coatings
Mahdi Ebrahimi, Mohsen Ghasemi, Zeinab Sajjadi. Chin. Phys. B, 2018, 27(10): 106802.
No Suggested Reading articles found!