Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 128402    DOI: 10.1088/1674-1056/25/12/128402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling and experimental studies of a side band power re-injection locked magnetron

Wen-Jun Ye(叶文军), Yi Zhang(张益), Ping Yuan(袁萍), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳)
College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
Abstract  

A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum's peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron.

Keywords:  magnetrons      injection locking      tuning stub      phase noise  
Received:  23 May 2016      Revised:  17 August 2016      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  85.40.Qx (Microcircuit quality, noise, performance, and failure analysis)  
  84.30.Vn (Filters)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).

Corresponding Authors:  Yang Yang     E-mail:  yyang@scu.edu.cn

Cite this article: 

Wen-Jun Ye(叶文军), Yi Zhang(张益), Ping Yuan(袁萍), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳) Modeling and experimental studies of a side band power re-injection locked magnetron 2016 Chin. Phys. B 25 128402

[1] Vyas S K, Maurya S and Singh V P 2014 IEEE Trans. Plasma Sci. 42 3373
[2] Tahir I, Dexter A and Carter R 2005 IEEE Trans. Electron Dev. 52 2096
[3] Dexter A C, Burt G and Carter R G 2011 Phys. Rev. Accel. Beams 14 032001
[4] SShinohara N, Matsumoto H and Hashimoto K 2003 Asia Pacific Microwave Conference, 2003, Tokyo, Japan, p. 1550
[5] Collins G B 1948 Microwave Magnetron (New York:McGraw-Hill) pp. 698-738
[6] Yamamoto K, Kurobuma H, Koinuma T and Tashiro N 1987 IEEE Trans. Electron Dev. 34 1223
[7] Osepchuk J M 1995 Proc. 1st Int. Workshop on Crossed-Field Devices, 1995, Ann Arbor, USA, p. 159
[8] Adler R 1946 Proc. IEEE 61 351
[9] Slater J C 1946 Rev. Mod. Phys. 18 441
[10] Slater J C 1947 Tech. Rep. 35 1
[11] Chen S C 1990 IEEE Trans. Plasma Sci. 18 570
[12] Pengvanich P, Neculaes V B, Lau Y Y, Gilgenbach R M, Jones M C, White W M and Kowalczyk R D 2005 J. Appl. Phys. 98 114903
[13] Tahir I, Dexter A and Carter R 2006 IEEE Trans. Electron Dev. 53 1721
[14] Treado T A, Hansen T A and Jenkins D J 1991 14th Biennial Particle Accelerator Conference:Accelerator Science and Technology, 1991, San Francisco, USA, p. 702
[15] Yue S, Zhang Z C and Gao D P 2014 Chin. Phys. B 23 088402
[16] Choi J J and Choi G W 2007 IEEE Trans. Electron Dev. 54 3430
[17] Sze H, Smith R R, Benford J N and Harteneck B D 1992 IEEE Trans. Electromagn. Compat. 34 235
[18] Chang H 2003 5 IEEE Trans. Microwave Theory Tech. 1 1994
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] Theoretical and experimental study on frequency pushing effect of magnetron
Kang Li(李慷), Yi Zhang(张益), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2019, 28(11): 118402.
[3] Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser
Zi-Jiao Yu(于子蛟), Hai-Nian Han(韩海年), Yang Xie(谢阳), Hao Teng(滕浩), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044205.
[4] A power and wavelength detuning-dependent hysteresis loop in a single mode Fabry-Pérot laser diode
Wu Jian-Wei (吴建伟), Bikash Nakarmi. Chin. Phys. B, 2013, 22(8): 084204.
[5] Optimization of regenerator based on semiconductor optical amplifier for degraded differential phase shift keying signal
Ma Yong-Xin(马永欣), Xi Li-Xia(席丽霞), Chen Guang(陈光), and Zhang Xiao-Guang(张晓光) . Chin. Phys. B, 2012, 21(6): 064222.
[6] Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system
Chen Wei(陈伟), Meng Zhou(孟洲), Zhou Hui-Juan(周会娟), and Luo Hong(罗洪) . Chin. Phys. B, 2012, 21(3): 034212.
[7] Semiconductor optical amplifier used as regenerator for degraded differential phase-shift keying signals
Xi Li-Xia(席丽霞), Li Jian-Ping(李建平), Du Shu-Cheng(杜树成), Xu Xia(徐霞), and Zhang Xiao-Guang(张晓光). Chin. Phys. B, 2011, 20(2): 024214.
No Suggested Reading articles found!