Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114204    DOI: 10.1088/1674-1056/25/11/114204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Observation of multi-Raman gain resonances in rubidium vapor

Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利)
Key Laboratory of Quantum Information and Quantum Optoelectronic Devices of Shanxi Province, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We present an experimental study of multi-Raman gain resonances in a hot rubidium vapor. The experiment is performed based on a high-efficiency four-wave mixing process due to the Raman-driven coherence in a double-Λ configuration. The Raman gain resonance for 85Rb atoms under a bias magnetic field is shown to be split into five or six peaks, depending on the orientation of the magnetic field. The formed multi-Raman gain resonances have potential applications in measurement of magnetic fields and generation of multi-frequency correlated twin beams.
Keywords:  four-wave mixing      multi-Raman gain resonances      coherent optical effects  
Received:  14 March 2016      Revised:  26 May 2016      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374238, 11574247, and 11534008) and the Fundamental Research Funds for the Central Universities, China (Grant No. xjj2014097).
Corresponding Authors:  Dong Wei, Hong Gao     E-mail:  weidong@mail.xjtu.edu.cn;honggao@mail.xjtu.edu.cn

Cite this article: 

Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利) Observation of multi-Raman gain resonances in rubidium vapor 2016 Chin. Phys. B 25 114204

[1] Agarwal G S, Dey T N and Gauthier D J 2015 Acta Phys. Sin. 64 094208 (in Chinese)
[2] Jiang K J, Deng L and Payne M G 2006 Phys. Rev. A 74 041803
[3] Jiang Q C, Liu C, Liu J H and Zhang J X 2015 Acta Phys. Sin. 64 094208 (in Chinese)
[4] Wang L J, Kuzmich A and Dogariu A 2000 Nature 406 277
[5] Deng L and Payne M G 2007 Phys. Rev. Lett. 98 253902
[6] Zhang L D, Jiang Y, Wan R G, Tian S C, Zhang B, Zhang X J, Gao J Y, Niu Y P and Gong S Q 2011 J. Phys. B 44 135505
[7] McCormick C F, Boyer V, Arimondo E and Lett P D 2007 Opt. Lett. 32 178
[8] Qin Z Z, Jing J T, Zhou J, Liu C J, Pooser R C, Zhou Z F and Zhang W P 2012 Opt. Lett. 37 3141
[9] Yu X D, Meng Z M and Zhang J 2013 Chin. Phys. B 22 094204
[10] Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X and Zhu S Y 2014 Phys. Rev. A 89 033813
[11] Wei D, Liu J, Yu Y, Wang J W, Gao H and Li F L 2015 J. Phys. B 48 245401
[12] Zibrov A S, Ye C Y, Rostovtsev Y V, Matsko A B and Scully M O 2002 Phys. Rev. A 65 043817
[13] Novikova I, Phillips D F, Zibrov A S, Walsworth R L, Taichenachev A V and Yudin V I 2006 Opt. Lett. 31 2353
[14] Novikova I, Phillips D F, Zibrov A S, Walsworth R L, Taichenachev A V and Yudin V I 2006 Opt. Lett. 31 622
[15] Hancox C, Hohensee M, Crescimanno M, Phillips D F and Walsworth R L 2008 Opt. Lett. 33 1536
[16] Slavov D, Sargsyan A, Sarkisyan D, Mirzoyan R, Krasteva A, Wilson-Gordon A D and Cartaleva S 2014 J. Phys. B 47 035001
[17] Sargsyan A, Mirzoyan R, Papoyan A and Sarkisyan D 2012 Opt. Lett. 37 4871
[18] Steck D A 2013 Rubidium 85 D line data http://steck.us/alkalidata/
[19] Guo X, Zhao J and Li Y 2012 Appl. Phys. Lett. 100 091112
[20] Gao H, Rosenberry M, Wang J and Batelaan H 2005 J. Phys. B 38 1857
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[3] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[4] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[5] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[6] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[7] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[8] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[9] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[10] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[11] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[12] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[13] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[14] Strong violations of locality by testing Bell's inequality with improved entangled-photon systems
Wang Yao (王尧), Fan Dai-He (樊代和), Guo Wei-Jie (郭伟杰), Wei Lian-Fu (韦联福). Chin. Phys. B, 2015, 24(8): 084203.
[15] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
No Suggested Reading articles found!