Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 105205    DOI: 10.1088/1674-1056/25/10/105205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

LIF diagnostics of hydroxyl radical in a methanol containing atmospheric-pressure plasma jet

Mu-Yang Qian(钱沐杨)1, San-Qiu Liu(刘三秋)1, Xue-Kai Pei(裴学凯)2, Xin-Pei Lu(卢新培)2, Jia-Liang Zhang(张家良)3, De-Zhen Wang(王德真)3
1 Department of Physics, Nanchang University, Nanchang 330031, China;
2 China State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
3 School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023, China
Abstract  

In this paper, a pulsed-dc CH3OH/Ar plasma jet generated at atmospheric pressure is studied by laser-induced fluorescence (LIF) and optical emission spectroscopy (OES). A gas-liquid bubbler system is proposed to introduce the methanol vapor into the argon gas, and the CH3OH/Ar volume ratio is kept constant at about 0.1%. Discharge occurs in a 6-mm needle-to-ring gap in an atmospheric-pressure CH3OH/Ar mixture. The space-resolved distributions of OH LIF inside and outside the nozzle exhibit distinctly different behaviors. And, different production mechanisms of OH radicals in the needle-to-ring discharge gap and afterglow of plasma jet are discussed. Besides, the optical emission lines of carbonaceous species, such as CH, CN, and C2 radicals, are identified in the CH3OH/Ar plasma jet. Finally, the influences of operating parameters (applied voltage magnitude, pulse frequency, pulsewidth) on the OH radical density are also presented and analyzed.

Keywords:  atmospheric-pressure plasma jet      hydrocarbon      OH radicals      laser-induced fluorescence  
Received:  22 May 2016      Revised:  16 June 2016      Accepted manuscript online: 
PACS:  52.50.Dg (Plasma sources)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  82.33.Xj (Plasma reactions (including flowing afterglow and electric discharges))  
  52.38.Dx (Laser light absorption in plasmas (collisional, parametric, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11465013 and 11375041), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20151BAB212012 and 20161BAB201013), and the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

Corresponding Authors:  San-Qiu Liu     E-mail:  sqlgroup@ncu.edu.cn

Cite this article: 

Mu-Yang Qian(钱沐杨), San-Qiu Liu(刘三秋), Xue-Kai Pei(裴学凯), Xin-Pei Lu(卢新培), Jia-Liang Zhang(张家良), De-Zhen Wang(王德真) LIF diagnostics of hydroxyl radical in a methanol containing atmospheric-pressure plasma jet 2016 Chin. Phys. B 25 105205

[1] Xiong Z, Zhao S, Mao X, Lu X, He G, Yang G, Chen M, Ishaq M and Ostrikov K 2014 Stem Cell Res. 12 387
[2] Fridman G, Friedman G, Gutsol A, Shekhter A, Vasilets V and Fridman A 2008 Plasma Processes Polym. 5 503
[3] Iza F, Kim G, Lee S, Lee J, Walsh J, Zhang Y and Kong M 2008 Plasma Processes Polym. 5 322
[4] Yang D Z, Li J, Wang W C, Wang S, Jiang P C, Zhang S, Qing X Y and Chen G L 2014 Plasma Processes Polym. 11 842
[5] Duarte S, Kuo S P, Murata R M, Chen C Y, Saxena D, Huang K J and Popovic S 2011 Phys. Plasmas 18 073503
[6] Xiong Q, Lu X P, Ostrikov K, Xian Y, Zou C, Xiong Z and Pan Y 2010 Phys. Plasmas 17 043506
[7] Zhang J, Yuan Q C, Zhang J L, Li T and Guo H C 2013 Chem.Commun. 49 10106
[8] Bruggeman P, Cunge G and Sadeghi N 2012 Plasma Sources Sci. Tech-nol. 21 035019
[9] Verreycken T, Mensink R, van der Horst R, Sadeghi N and Bruggeman P 2013 Plasma Sources Sci. Technol. 22 055014
[10] Ono R and Oda T 2003 J. Appl. Phys. 93 5876
[11] Ono R and Oda T 2008 J. Phys. D: Appl. Phys. 41 035204
[12] Li L, Nikiforov A, Xiong Q, Britun N, Snyders R, Lu X and Leys C 2013 Phys. Plasmas 20 093502
[13] Qian M Y, Yang C Y, Wang Z D, Chen X C, Liu S Q and Wang D Z 2016 Chin. Phys. B 25 015202
[14] Liu X Y Pei X K, Ostrikov K, Lu X P and Liu D W 2014 Phys. Plasmas 21 093513
[15] Pei X K, Wu S Q, Xian Y, Lu X P and Pan Y 2014 IEEE Trans. Plasma Sci. 42 1206
[16] Pei X, Lu Y, Wu S, Xiong Q and Lu X 2013 Plasma Sources Sci. Tech-nol. 22 025023
[17] Yonemori S and Ono R 2014 J. Phys. D: Appl. Phys. 47 125401
[18] Liu D X, Bruggeman P, Iza F, Rong M Z and Kong M G 2010 Plasma Sources Sci. Technol. 19 025018
[19] Han Y, Wang J G, Cheng D G and Liu C J 2006 Ind. Eng. Chem. Res. 45 3460
[20] Hiroki A, Pimblott S M and Laverne J A 2002 J. Phys. Chem. A 106 9352
[21] Yan Z C, Chen L and Wang H L 2007 Acta Phys.-Chim. Sin. 23 835 (in Chinese)
[22] Chang A H H and Lin S H 2002 Chem. Phys. Lett. 363 175
[1] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[2] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[3] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[4] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c. Chin. Phys. B, 2020, 29(10): 107103.
[5] Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence
Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2018, 27(10): 100601.
[6] Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame
Shuang Chen(陈爽), Tie Su(苏铁), Yao-Bang Zheng(郑尧邦), Li Chen(陈力), Ting-Xu Liu(刘亭序), Ren-Bing Li(李仁兵), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(6): 060703.
[7] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
[8] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[9] Quantitative measurements of one-dimensional OH absolute concentration profiles in a methane/air flat flame by bi-directional laser-induced fluorescence
Yu Xin (于欣), Yang Zhen (杨振), Peng Jiang-Bo (彭江波), Zhang Lei (张蕾), Ma Yu-Fei (马欲飞), Yang Chao-Bo (杨超博), Li Xiao-Hui (李晓晖), Sun Rui (孙锐). Chin. Phys. B, 2015, 24(11): 114204.
No Suggested Reading articles found!