Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 095205    DOI: 10.1088/1674-1056/25/9/095205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of air pressure on the performance of plasma synthetic jet actuator

Yang Li(李洋)1, Min Jia(贾敏)1, Yun Wu(吴云)2, Ying-hong Li(李应红)1, Hao-hua Zong(宗豪华)2, Hui-min Song(宋慧敏)1, Hua Liang(梁华)1
1. Air Force Engineering University, Xi'an 710038, China;
2. Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Plasma synthetic jet actuator (PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity. In this paper, the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 kPa to 100 kPa. The energy consumed by the PSJA is roughly the same for all the pressure levels. Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures. The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases. The peak jet front velocity always appears at the first appearance of a jet, and it decreases gradually with the increase of the air pressure. A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 kPa. The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures, and it drops with the rising of the air pressure. High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 kPa.
Keywords:  plasma synthetic jet actuator      air pressure      performance      schlieren method  
Received:  29 September 2015      Revised:  14 April 2016      Published:  05 September 2016
PACS:  52.50.Dg (Plasma sources)  
  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  52.80.Vp (Discharge in vacuum)  
  47.80.Jk (Flow visualization and imaging)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51407197, 51522606, 51336011, 91541120, and 11472306).
Corresponding Authors:  Yun Wu     E-mail:  wuyun1223@126.com

Cite this article: 

Yang Li(李洋), Min Jia(贾敏), Yun Wu(吴云), Ying-hong Li(李应红), Hao-hua Zong(宗豪华), Hui-min Song(宋慧敏), Hua Liang(梁华) Influence of air pressure on the performance of plasma synthetic jet actuator 2016 Chin. Phys. B 25 095205

[1] Li Y H, Wu Y and Li J 2012 Int. J. Flow Control 4 1756
[2] Zhao G Y, Li Y H and Liang H 2015 Acta. Phys. Sin. 64 015101 (in Chinese)
[3] Zhao G Y, Li Y H, Liang H and Han M H 2015 Exp. Fluids 56 1864
[4] Popkin S H, Taylor T M and Cybyk B Z 2013 J. Hopkins Apl. Tech. D 32 404
[5] Cybyk B Z, Wilkerson J T and Grossman K R 2004 2nd AIAA Flow Control Conference, June 28-July 1, 2004, Portland, Oregon, p. 2131
[6] Grossman K R, Cybyk B Z and VanWi D M 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit, January 5-8 ,2004, Reno, Nevada, p. 0089
[7] Ko H S, Haack S J and Land H B 2010 Flow Meas. Instrum. 21 443
[8] Haack S J, Land H and Cybyk B 2008 4th Flow Control Conference, June 23-26, 2008, Seattle, Washington, p. 3759
[9] Cybyk B Z, Grossman K R and Wilkerson J T 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit, January 10-13, 2005, Reno, Nevada p. 401
[10] Cybyk B Z, Simon D H and Land H B 2006 44th AIAA Aerospace Sciences Meeting and Exhibit, January 9-12, 2006, Reno, Nevada, p. 478
[11] Cybyk B Z, Wilkerson J T and Grossman K R 2003 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando 23-26 , Florida, American, p. 3711
[12] Belinger A, Hardy P and Barricau P 2011 J. Phys. D: Appl. Phys. 44 365201
[13] Berlinger A, Naude N and Cambronne J P 2014 J. Phys. D: Appl. Phys. 47 345202
[14] Belinger A, Hardy P and Gherardi N 2011 IEEE Trans. Plasma Sci. 39 2334
[15] Jin D, Li Y H and Jia M 2013 Plasma Sci. Tech. 15 1033
[16] Santhanakrishnan A and Jacob J D 2007 J. Phys. D: Appl. Phys. 40 637
[17] Santhanakrishnan A, Reasor D A and LeBeau R P 2009 Phys. Fluids 2009 21 043602
[18] Reedy T M and Kale N V 2013 AIAA J. 51 2027
[19] Haack S J, Taylor T and Emhoff J 2010 5th Flow Control Conference, June 28-July 1, 2010, Chicago, Illinois, p. 4979
[20] Popkin S H, Cybyk B Z and Land III H B 2013 51st AIAA Aerospace Sciences Meeting, January 7-10, 2013, Texas, American, p. 0322
[21] Golbabaei A M, Knight D and Wilkinson S 2015 AIAA J. 53 501
[22] Shin J 2010 Chin. J. Aeronaut. 23 518
[23] Zong H H, Wu Y and Li Y H 2015 Phys. Fluids 27 027105
[24] Zong H H, Cui W and Wu Y 2015 Sensor Actuat. A: Phys. 222 114
[25] Emerick T, Ali M Y and Foster C 2014 Exp. Fluids 55 1858
[26] Wang L, Xia Z X and Luo Z B 2014 Sci. China-Phys. Mech. 57 2309
[27] Wang L, Xia Z X and Luo Z B 2014 Acta. Phys. Sin. 63 194702 (in Chinese)
[1] Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage
Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁). Chin. Phys. B, 2020, 29(8): 088801.
[2] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[3] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[4] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[5] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[6] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[7] Enhanced soft magnetic properties of iron powders through coating MnZn ferrite by one-step sol-gel synthesis
Dong Liu(刘冬), Shanmin Gao(高善民), Rencheng Jin(金仁成), Feng Wang(王峰), Xiaoxiao Chu(初晓晓), Taiping Gao(高太平), Yubao Wang(王玉宝). Chin. Phys. B, 2019, 28(5): 057503.
[8] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[9] Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er,Pr: GYSGG bonding rod with concave end-faces
Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Lun-Zhen Hu(胡伦珍), Zhi-Yuan Han(韩志远), Mao-Jie Cheng(程毛杰), Shao-Tang Yin(殷绍唐). Chin. Phys. B, 2019, 28(11): 114208.
[10] Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance
Hui-Fang Xu(许会芳), Jian Cui(崔健), Wen Sun(孙雯), Xin-Feng Han(韩新风). Chin. Phys. B, 2019, 28(10): 108501.
[11] Optimization of ambipolar current and analog/RF performance for T-shaped tunnel field-effect transistor with gate dielectric spacer
Ru Han(韩茹), Hai-Chao Zhang(张海潮), Dang-Hui Wang(王党辉), Cui Li(李翠). Chin. Phys. B, 2019, 28(1): 018505.
[12] Tunable circularly-polarized turnstile-junction mode converter for high-power microwave applications
Xiao-Yu Wang(王晓玉), Yu-Wei Fan(樊玉伟), Ting Shu(舒挺), Cheng-Wei Yuan(袁成卫), Qiang Zhang(张强). Chin. Phys. B, 2018, 27(6): 068401.
[13] Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter
Sheng-Fang Huang(黄胜方), Hui-Min Song(宋慧敏), Yun Wu(吴云), Min Jia(贾敏), Di Jin(金迪), Zhi-Bo Zhang(张志波), Bing-Xuan Lin(林冰轩). Chin. Phys. B, 2018, 27(3): 035203.
[14] Experimental and numerical investigation of a Hall thruster with a chamfered channel wall
Hong Li(李鸿), Guo-Jun Xia(夏国俊), Wei Mao(毛威), Jin-Wen Liu(刘金文), Yong-Jie Ding(丁永杰), Da-Ren Yu(于达仁), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2018, 27(10): 105209.
[15] A novel stable value iteration-based approximate dynamic programming algorithm for discrete-time nonlinear systems
Yan-Hua Qu(曲延华), An-Na Wang(王安娜), Sheng Lin(林盛). Chin. Phys. B, 2018, 27(1): 010203.
No Suggested Reading articles found!