Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087503    DOI: 10.1088/1674-1056/25/8/087503

Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22

Fen Wang(王芬)1,2, Shi-Peng Shen(申世鹏)2, Young Sun(孙阳)2
1 Chinese Aeronautical Establishment, Beijing 100012, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

We report on the magnetic and magnetoelectric properties of the Y-type hexaferrite BaSrZnMgFe12O22, which undergoes transitions from a collinear ferrimagnetic phase to a proper screw phase at 310 K and to a longitudinal conical phase at 45 K. Magnetic and electric measurements revealed that the magnetic structure with spiral spin order can be modified by applying a magnetic field, resulting in magnetically controllable electric polarization.It was observed that BaSrZnMgFe12O22 exhibits an anomalous magnetoelectric memory effect: the ferroelectric state can be partially recovered from the paraelectric phase with collinear spin structure by reducing magnetic field at 20 K. We ascribe this memory effect to the pinning of multiferroic domain walls, where spin chirality and structure are preserved even in the nonpolar collinear spin state.

Keywords:  multiferroic      magnetoelectric effect      memory effect  
Received:  27 April 2016      Revised:  14 June 2016      Published:  05 August 2016
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  75.50.-y (Studies of specific magnetic materials)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11534015 and 51371193).

Corresponding Authors:  Young Sun     E-mail:

Cite this article: 

Fen Wang(王芬), Shi-Peng Shen(申世鹏), Young Sun(孙阳) Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22 2016 Chin. Phys. B 25 087503

[1] Hill N A 2000 J. Phys. Chem. B 104 6694
[2] Spaldin N A and Fiebig M 2005 Science 309 391
[3] Fiebig M 2005 J. Phys. D:Appl. Phys. 38 R123
[4] Shang D S, Chai Y S, Cao Z X, Lu J and Sun Y 2015 Chin. Phys. B 24 068402
[5] Yao X F and Zhang J X 2014 Physics 43 227 (in Chinese)
[6] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[7] Lawes G, Harris A B, Kimura T, Rogado N, Cava R J, Aharony A, Entin-Wohlman O, Yildirim T, Kenzelmann M, Broholm C and Ramirez A P 2005 Phys. Rev. Lett. 95 087205
[8] Heyer O, Hollmann N, Klassen I, Jodlauk S, Bohaty L, Becker P, Mydosh J A, Lorenz T and Khomskii D 2006 J. Phys.:Condens. Matter 18 L471
[9] Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T and Tokura Y 2006 Phys. Rev. Lett. 96 207204
[10] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
[11] Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
[12] Kimura T, Lawes G and Ramirez A P 2005 Phys. Rev. Lett. 94 137201
[13] Ishiwata S, Taguchi Y, Murakawa H, Onose Y and Tokura Y 2008 Science 319 1643
[14] Chun S H, Chai Y S, Oh Y S, Jaiswal-Nagar D, Haam S Y, Kim I, Lee B, Nam D H, Ko K T, Park J H, Chung J H and Kim K H 2010 Phys. Rev. Lett. 104 037204
[15] Tokunaga Y, Kaneko Y, Okuyama D, Ishiwata S, Arima T, Wakimoto S, Kakurai K, Taguchi Y and Tokura Y 2010 Phys. Rev. Lett. 105 257201
[16] Kitagawa Y, Hiraoka Y, Honda T, Ishikura T, Nakamura H and Kimura T 2010 Nat. Mater. 9 797
[17] Hiraoka Y, Nakamura H, Soda M, Wakabayashi Y and Kimura T 2011 J. Appl. Phys. 110 033920
[18] Okumura K, Ishikura T, Soda M, Asaka T, Nakamura H, Wakabayashi Y and Kimura T 2011 Appl. Phys. Lett. 98 212504
[19] Wang F, Zou T, Yan L Q, Liu Y and Sun Y 2012 Appl. Phys. Lett. 100 122901
[20] Shen S P, Yan L Q, Chai Y S, Cong J Z and Sun Y 2014 Appl. Phys. Lett. 104 032905
[21] Shen S P, Chai Y S, Cong J Z, Sun P, Lu J, Yan L Q, Wang S G and Sun Y 2014 Phys. Rev. B 90 180404
[22] Song Y Q, Fang Y, Wang L Y, Zhou W P, Cao Q Q, Wang D H and Du Y W 2014 J. Appl. Phys. 115 093905
[23] Hirose S, Haruki K, Ando A and Kimura T 2014 Appl. Phys. Lett. 104 022907
[24] Chun S H, Chai Y S, Jeon B G, Kim H J, Oh Y S, Kim I, Kim H, Jeon B J, Haam S Y, Park J Y, Lee S H, Chung J H, Park J H and Kim K H 2012 Phys. Rev. Lett. 108 177201
[25] Chai Y S, Kwon S, Chun S H, Kim I, Jeon B G, Kim K H and Lee S 2014 Nat. Commun. 5 4208
[26] Shen S P, Chai Y S and Sun Y 2015 Sci. Rep. 5 8254
[27] Taniguchi K, Abe N, Ohtani S, Umetsu H and Arima T 2008 Appl. Phys. Express 1 031301
[28] Sagayama H, Taniguchi K, Abe N, Arima T, Nishikawa Y, Yano S, Kousaka Y, Akimitsu J, Matsuura M and Hirota K 2009 Phys. Rev. B 80 180419
[29] Ishiwata S, Taguchi Y, Tokunaga Y, Murakawa H, Onose Y and Tokura Y 2009 Phys. Rev. B 79 180408
[30] Momozawa N, Nagao Y, Utsumi S, Abe M and Yamaguchi Y 2001 J. Phys. Soc. Jpn. 70 2724
[31] Momozawa N, Yamaguchi Y, Takei H and Mita M 1985 J. Phys. Soc. Jpn. 54 771
[32] Utsumi S, Yoshiba D and Momozawa N 2007 J. Phys. Soc. Jpn. 76 034704
[33] Xu F, Bai Y, Ai F and Qiao L J 2008 Chin. Phys. B 17 4652
[1] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[2] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[3] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[4] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[5] Memory effect evaluation based on transmission matrix calculation
Ming Li(李明), Long-Jie Fang(方龙杰), Lin Pang(庞霖). Chin. Phys. B, 2019, 28(7): 074207.
[6] Structures and local ferroelectric polarization switching properties of orthorhombic YFeO3 thin film prepared by a sol-gel method
Runlan Zhang(张润兰), Shuaishuai Li(李帅帅), Changle Chen(陈长乐), Li-An Han(韩立安), Shanxin Xiong(熊善新). Chin. Phys. B, 2019, 28(3): 037701.
[7] Unusual tunability of multiferroicity in GdMn2O5 by electric field poling far above multiferroic ordering point
Xiang Li(李翔), Shuhan Zheng(郑书翰), Liman Tian(田礼漫), Rui Shi(石锐), Meifeng Liu(刘美风), Yunlong Xie(谢云龙), Lun Yang(杨伦), Nian Zhao(赵念), Lin Lin(林林), Zhibo Yan(颜志波), Xiuzhang Wang(王秀章), Junming Liu(刘俊明). Chin. Phys. B, 2019, 28(2): 027502.
[8] Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry
Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(9): 097701.
[9] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[10] Effect of thermo-mechanical process on structure and high temperature shape memory properties of Ti-15Ta-15Zr alloy
Xiao-Hang Zheng(郑晓航), Jie-He Sui(隋解和), Zhe-Yi Yang(杨哲一), Guo-Zhang Zhi(张治国), Wei Cai(蔡伟). Chin. Phys. B, 2017, 26(5): 056103.
[11] Magnetoelectric effect in multiferroic NdMn2O5
Syed Hamad Bukhari, Javed Ahmad. Chin. Phys. B, 2017, 26(1): 018103.
[12] A-site ordered quadruple perovskite oxides AA3'B4O12
Youwen Long(龙有文). Chin. Phys. B, 2016, 25(7): 078108.
[13] Realization of a flux-driven memtranstor at room temperature
Shi-Peng Shen(申世鹏), Da-Shan Shang(尚大山), Yi-Sheng Chai(柴一晟), Young Sun(孙阳). Chin. Phys. B, 2016, 25(2): 027703.
[14] Emergent ferroelectricity in disordered tri-color multilayer structure comprised of ferromagnetic manganites
Li-Wei Niu(牛利伟), Chang-Le Chen(陈长乐), Xiang-Lei Dong(董祥雷), Hui Xing(邢辉), Bing-Cheng Luo(罗炳成), Ke-Xin Jin(金克新). Chin. Phys. B, 2016, 25(10): 107701.
[15] Modulation of electronic properties with external fields in silicene-based nanostructures
Li Geng, Zhao Yin-Chang, Zheng Rui, Ni Jun, Wu Yan-Ning. Chin. Phys. B, 2015, 24(8): 087302.
No Suggested Reading articles found!