Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087501    DOI: 10.1088/1674-1056/25/8/087501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Entanglement in a two-spin system with long-range interactions

Soltani M R1, Mahdavifar S2, Mahmoudi M2
1 Department of Physics, College of Science, Yadegar-e-Imam Khomeini(RAH) Shahre-Rey Branch, Islamic Azad University, Tehran, Iran;
2 Department of Physics, University of Guilan, 41335-1914, Rasht, Iran
Abstract  The quantum entanglement between two spins in the Ising model with an added Dzyaloshinsky-Moriya (DM) interaction and in the presence of the transverse magnetic field is studied. The exchange interaction is considered as a function of the distance between spins. The negativity as a function of magnetic field, exchange and DM interaction is calculated. The effect of the distance between spins is studied based on the negativity. In addition, the effect of the thermal fluctuation on the negativity is also investigated.
Keywords:  entanglement      Ising model      DM interaction      negativity      long range interaction  
Received:  02 February 2016      Revised:  08 March 2016      Published:  05 August 2016
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.10.Pq (Spin chain models)  
Corresponding Authors:  Soltani M R     E-mail:  soltani@iausr.ac.ir

Cite this article: 

Soltani M R, Mahdavifar S, Mahmoudi M Entanglement in a two-spin system with long-range interactions 2016 Chin. Phys. B 25 087501

[1] Schumacher B 1996 Phys. Rev. A 54 2614
[2] Imamoghlu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Bennett C H and Wiesner S J 1988 Phys. Rev. Lett. 69 2881
[5] Han L 2015 Acta Phys. Sin. 64 160307 (in Chinese)
[6] Qing Q, Kui F and Cheng C 2015 Acta Phys. Sin. 64 160306 (in Chinese)
[7] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[8] Santos L F 2003 Phys. Rev. A 67 062306
[9] Bukard G, Loss D and Divincenzo D P 1999 Phys. Rev. B 59 2070
[10] Dvincenzo D P 1995 Science 270 255
[11] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[12] Bose S and Contemp J 2007 Physica 48 13
[13] Key A 2010 Int. J. Quantum Inform. 8 641
[14] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[15] Sun Y, Chen Y and Chen H 2003 Phys. Rev. A 68 044301
[16] Wang X 2001 Phys. Rev. A 64 012313
[17] Yeo Y 2002 Phys. Rev. A 66 062312
[18] Santos L F 2003 Phys. Rev. A 67 062306
[19] Zhou L Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[20] Abliz A et al. 2006 Phys. Rev. A 74 052105
[21] Zhang G F 2007 Phys. Rev. A 75 034304
[22] Soltani M R, Vahedi J, Sadremomtaz A R and Aboulhasni M R 2012 Indian J. Phys. 86 1073
[23] Han S D and Aydiner E 2014 Chin. Phys. B 23 050305
[24] Vahedi J, Soltani M R and Mahdavifar S 2012 Journal of Superconductivity and Novel Magnetism 15 1159
[25] Li D C, Li X M, Li H, Tao R, Yang M and Cao Z L 2015 Chin. Phys. Lett. 32 050302
[26] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[27] Soheilian F and Soltani M R 2010 Indian J. Phys. 84 257
[28] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[29] Asoudeh M and Karimipour V 2005 Phys. Rev. A 71 022308
[30] Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
[31] Vidal G and Werne R F 2002 Phys. Rev. A 65 032314
[32] Sutherland B 1971 Phys. Rev. A 4 2019
[33] Haldane F D M 1988 Phys. Rev. Lett. 60 635
[34] Haldane F D M 1991 Phys. Rev. Lett. 66 1529
[35] Shastry B S 1992 Phys. Rev. Lett. 69 164
[36] Kawakami N 1992 Phys. Rev. B 46 1005
[37] Han S D, Tufekci T, Spiller T P and Aydiner E 2012 arXiv:1111.2694 quanta-ph
[38] Jurcevic P and Lanyon B P 2014 Nature 511 202
[39] Schachenmayer J, Lanyon B P, Roos C F and Daley A 2013 Phys. Rev. X 3 031015
[40] Hauke P and Tagliacozzo L 2013 Phys. Rev. Lett. 111 207202
[41] Divyamani1 B G 2013 Chin. Phys. Lett. 30 120301
[42] Shastry B S 1988 Phys. Rev. Lett. 60 639
[1] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[2] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[3] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[4] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[5] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[6] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[7] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[8] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[9] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[10] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[11] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[12] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[13] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[14] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[15] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
No Suggested Reading articles found!