Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 086801    DOI: 10.1088/1674-1056/25/8/086801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Stable structure and optical properties of fused silica with NBOHC-E' defect

Peng-Fei Lu(芦鹏飞)1,2, Li-Yuan Wu(伍力源)1, Yang Yang(杨阳)1, Wei-Zheng Wang(王唯正)1, Chun-Fang Zhang(张春芳)3, Chuang-Hua Yang(杨创华)4, Rui Su(苏锐)3, Jun Chen(陈军)5
1 State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications(BUTP), Beijing 100876, China;
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
3 Beijing Computational Science Research Center, Beijing 100084, China;
4 School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001, China;
5 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  First-principles method is used to simulate the stable structure and optical properties of a 96-atom fused silica. The preferable structure of NBOHC-E' (non-bridging oxygen hole center (NBOHC) and E' center) pair defect is predicted to be located at 2.4 Å for the Si-O bond length. The quasi-particle G0W0 calculations are performed and an accurate band gap is obtained in order to calculate the optical absorption properties. With the stretching of the Si1-O1 bond, an obvious redshift can be observed in the absorption spectrum. In the case of NBOHC-E' pair, the p-orbital DOS of Si1 atom will shift to the conduction band. Two obvious absorption peaks can be observed in the absorption spectrum. The calculation reproduced the peak positions of the well-known optical absorption bands.
Keywords:  fused silica      NBOHC-E'      electronic structure      optical properties  
Received:  18 January 2016      Revised:  04 April 2016      Accepted manuscript online: 
PACS:  68.35.bj (Amorphous semiconductors, glasses)  
  71.23.-k (Electronic structure of disordered solids)  
  67.80.dj (Defects, impurities, and diffusion)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB643900), the Open Fund of IPOC (BUPT), the Open Program of State Key Laboratory of Functional Materials for Informatics, the National Natural Science Foundation for Theoretical Physics Special Fund "Cooperation Program" (Grant No. 11547039), and Shaanxi Provincial Institute of Scientific Research Plan Projects, China (Grant No. SLGKYQD2-05).
Corresponding Authors:  Peng-Fei Lu     E-mail:  photon.bupt@gmail.com

Cite this article: 

Peng-Fei Lu(芦鹏飞), Li-Yuan Wu(伍力源), Yang Yang(杨阳), Wei-Zheng Wang(王唯正), Chun-Fang Zhang(张春芳), Chuang-Hua Yang(杨创华), Rui Su(苏锐), Jun Chen(陈军) Stable structure and optical properties of fused silica with NBOHC-E' defect 2016 Chin. Phys. B 25 086801

[1] Liu H J, Huang C J, Wang F R, Zhou X D, Ye X Zhou X Y, Sun L X, Jiang X D, Sui Z and Zheng W G 2013 Opt. Express 21 12204
[2] Laurence T A, Bude J D, Shen S N and Feit F D 2012 Opt. Express 20 11561
[3] Uchino T, Takahashi M and Yoko T 2002 Appl. Phys. Lett. 80 1147
[4] Vaccaro L, Cannas M, Boizot B and Parlato A 2007 J. Non-Cryst. Solids 353 586
[5] Skuja L 1994 J. Non-Cryst. Solids 179 51
[6] Liu H J, Wang F R, Luo Q, Zhang Z, Huang J, Zhou X D, Jiang X D, Wu W D and Zheng W G 2012 Acta Phys. Sin. 61 076103 (in Chinese)
[7] Bakos T, Rashkeev S and Pantelides S 2004 Phys. Rev. B 70 075203
[8] Hosono H, Kajihara K, Suzuki T, Ikuta Y, Skuja L and Hirano L 2002 Solid State Commun. 122 177
[9] Kajihara K, Hirano M, Skuja L and Hosono H 2008 Phys. Rev. B 78 094201
[10] Cannas M and Leone M 2001 J. Non-Cryst. Solids 280 183
[11] Raghavachari K, Ricci D and Pacchioni G 2002 J. Chem. Phys. 116 825
[12] Suzuki T, Skuja L, Kajihara K, Hirano M, Kamiya T and Hosono H 2003 Phys. Rev. Lett. 90 186404
[13] Saeta P N and Greene B I 1993 Phys. Rev. Lett. 70 3588
[14] Griscom D L 2004 J. Non-Cryst. Solids 349 139
[15] Wang T S, Duan B H, Tian F, Peng H B, Chen L, Zhang L M and Yuan W 2015 Chin. Phys. B 24 076102
[16] Li L, Xiang X, Yuan X D, He S B, Jiang X D, Zheng W G and Zu X T 2013 Chin. Phys. B 22 054207
[17] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 22
[18] Ginhoven R V, Jonsson H, Peterson K A, Dupuis M and Corrales L R 2003 J. Chem. Phys. 118 6582
[19] Donadio D, Bernasconi M and Boero M 2001 Phys. Rev. Lett. 87 195504
[20] Bakos T, Rashkeev S and Pantelides S 2004 Phys. Rev. B 70 075203
[21] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
[22] Plimpton S 1995 J. Comput. Phys. 117 1
[23] Mozzi R L and Warren B E 1969 J. Appl. Crystallogr. 2 164
[24] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[25] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Giordano L, Sushko P V, Pacchioni G and Shluger A L 2007 Phys. Rev. Lett. 99 136801
[28] Feltz W 1993 Amorphous Inorganic Materials and Glasses (New York:Weinheim/VCH) p. 217
[29] Pratt L M, Nguyen N V and Ramachamdran B 2005 J. Org. Chem. 70 4279
[30] Pacchioni G, Skuja L and Griscom D L 2000 Science and Technology, p. 73
[31] Boero M and Oshiyama A 2003 Phys. Rev. Lett. 91 20640
[32] Stevens-Kalceff M A, Stesmans A and Wong J 2002 Appl. Phys. Lett. 80 758
[33] Wu P H, Yu X Y, Cheng C W, Liao C H, Feng S W and Wang H C 2011 Opt. Express 19 16390
[34] David Waroquiers 2013 "Electronic and optical properties of crystalline and amorphous silica from first-principles", Diss. UCL, 2013
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[7] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[8] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[11] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[12] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[13] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[14] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!