Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 084201    DOI: 10.1088/1674-1056/25/8/084201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces

Ze-Jian Yang(阳泽健)1,2, De-Jiao Hu(胡德骄)1,2, Fu-Hua Gao(高福华)1,2, Yi-Dong Hou(侯宜栋)1,2
1 College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;
2 Sino-British Joint Materials Research Institute, Sichuan University, Chengdu 610064, China
Abstract  

The circular dichroism (CD) signal of a two-dimensional (2D) chiral meta-surface is usually weak, where the difference between the transmitted (or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry-Perot type resonance, which interacts with the localized surface plasmonic resonance (LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc.

Keywords:  chiral meta-surfaces      hybridization      Fabry-Perot resonance  
Received:  02 February 2016      Revised:  05 April 2016      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61377054).

Corresponding Authors:  Fu-Hua Gao     E-mail:  gaofuhua@scu.edu.cn

Cite this article: 

Ze-Jian Yang(阳泽健), De-Jiao Hu(胡德骄), Fu-Hua Gao(高福华), Yi-Dong Hou(侯宜栋) Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces 2016 Chin. Phys. B 25 084201

[1] Shi H Y, Li J X, Zhang A X, Wang J F and Xu Z 2014 Chin. Phys. B 23 118101
[2] Liu D Y, Luo X Y, Liu J J and Dong J F 2013 Chin. Phys. B 22 124202
[3] Cao T, Zhang L, Simpson R E, Wei C and Cryan M J 2013 Opt. Express 21 27841
[4] Mutlu M, Akosman A E, Serebryannikov A E and Ozbay E 2011 Opt. Lett. 36 653
[5] Decker M, Zhao R, Soukoulis C M, Linden S and Wegener M 2010 Opt. Lett. 35 1593
[6] Zhao Y, Belkin M A and Alù A 2012 Nat. Commun. 3 870
[7] Cao T, Wei C, Mao L and Li Y 2014 Sci. Rep. 4
[8] Zhang X R, Yang X and Ding X L 2012 Chin. Phys. B 21 093601
[9] Kaschke J, Gansel J K and Wegener M 2012 Opt. Express 12 20 26012
[10] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S and Wegener M 2009 Science 325 1513
[11] Yang Z Y, Zhao M, Lu P X and Lu Y F 2010 Opt. Lett. 35 2588
[12] McPeak K M, van Engers C D, Blome M, Park J H, Burger S, Gosalvez M A, Faridi A, Ries Y R, Sahu A and Norris D J 2014 Nano Lett. 14 2934
[13] Xu C and Dong J F 2010 Chin. Opt. Lett. 8 1067
[14] Ma W, Kuang H, Xu L, Ding L, Xu C, Wang L and Kotov N A 2013 Nat. Commun. 4 2689
[15] Zhao R, Zhou J, Koschny T, Economou E N and Soukoulis C M 2009 Phys. Rev. Lett. 103 103602
[16] Park H S, Kim T T, Kim H D, Kim K and Min B 2014 Nat. Commun. 5 5435
[17] Ye W, Yuan X, Guo C, Zhang J, Yang B, Liu K, Zhu Z H and Zeng C 2014 arXiv:1410 2656
[18] Luo H, Ling X, Zhou X, Shu W, Wen S and Fan D 2011 Phys. Rev. A 84 033801
[19] Wang H and Zhang X 2011 Phys. Rev. A 83 053820
[20] Johnson P B 1972 Phys. Rev. B 6 4370
[21] Hentschel M, Ferry V E and Alivisatos A P 2015 ACS Photon. 2 1253
[22] Wu L, Yang Z Y, Cheng Y Z, Lu Z Q, Zhang P Z, Zhao M Z, Gong R Z, Yuan X H, Zheng Y and Duan J A 2013 Opt. Express 21 5239
[23] Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401
[24] Plum E 2010 "Chirality and metamaterials", Doctoral Dissertation (University of Southampton) pp. 86-126
[25] Taubert R, Ameling R, Weiss T, Christ A and Giessen H 2011 Nano Lett. 11 4421
[26] Vázquez-Guardado A, Safaei A, Modak S, Franklin D and Chanda D 2014 Phys. Rev. Lett. 113 263902
[27] Bahramipanah M, Dutta-Gupta S, Abasahl B and Martin O J 2015 ACS Nano 9 7621
[28] Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo I C, Chen S and Huang T J 2011 Opt. Express 19 15221
[29] Volkov S N, Dolgaleva K, Boyd R W, Jefimovs K, Turunen J, Svirko Y, Canfiled B K and Kauranen M 2009 Phys. Rev. A 79 043819
[30] Yan C and Martin O J 2014 ACS Nano 8 11860
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
Zhaokun Dong(董昭昆), Zhen Wang(王振), Te Zhang(张特), Junsen Xiang(项俊森), Shuai Zhang(张帅), Lihua Liu(刘丽华), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117502.
[3] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[4] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[5] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[6] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[7] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[8] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[9] Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2P2
Huan-Cheng Yang(杨焕成), Kai Liu(刘 凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2018, 27(6): 067103.
[10] Optical study on intermediate-valence compounds Yb1-xLuxAl3
J L Lv(吕佳林), J L Luo(雒建林), N L Wang(王楠林). Chin. Phys. B, 2018, 27(1): 017803.
[11] Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer
Han-Hua Zhong(钟汉华), Jian-Hong Zhou(周见红), Chen-Jie Gu(顾辰杰), Mian Wang(王勉), Yun-Tuan Fang(方云团), Tian Xu(许田), Jun Zhou(周骏). Chin. Phys. B, 2017, 26(12): 127301.
[12] Landau level transitions in InAs/AlSb/GaSb quantum wells
Wu Xiao-Guang (吴晓光), Pang Mi (庞蜜). Chin. Phys. B, 2015, 24(9): 097301.
[13] Electronic and optical properties of lithium niobate under high pressure: A first-principles study
Sang Dan-Dan (桑丹丹), Wang Qing-Lin (王庆林), Han Chong (韩崇), Chen Kai (陈凯), Pan Yue-Wu (潘跃武). Chin. Phys. B, 2015, 24(7): 077104.
[14] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
[15] Intermediate sp-hybridization for chemical bonds in nonplanar covalent molecules of carbon
Cao Ze-Xian (曹则贤). Chin. Phys. B, 2014, 23(6): 063102.
No Suggested Reading articles found!