Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 084102    DOI: 10.1088/1674-1056/25/8/084102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Interaction of Airy-Gaussian beams in saturable media

Meiling Zhou(周美玲)1, Yulian Peng(彭玉莲)1, Chidao Chen(陈迟到)1, Bo Chen(陈波)1, Xi Peng(彭喜)1, Dongmei Deng(邓冬梅)1,2
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China;
2 CAS Key Laboratory of Geospace Environment, University of Science & Technology of China, Chinese Academy of Sciences(CAS), Hefei 230026, China
Abstract  Based on the nonlinear Schrödinger equation, the interactions of the two Airy-Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy-Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy-Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.
Keywords:  Airy-Gaussian beam      interaction      saturable media  
Received:  22 December 2015      Revised:  15 March 2016      Published:  05 August 2016
PACS:  41.85.-p (Beam optics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), and the Foundation of Cultivating Outstanding Young Scholars ("Thousand, Hundred, Ten" Program) of Guangdong Province, China. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.
Corresponding Authors:  Dongmei Deng     E-mail:  dmdeng@263.net

Cite this article: 

Meiling Zhou(周美玲), Yulian Peng(彭玉莲), Chidao Chen(陈迟到), Bo Chen(陈波), Xi Peng(彭喜), Dongmei Deng(邓冬梅) Interaction of Airy-Gaussian beams in saturable media 2016 Chin. Phys. B 25 084102

[1] Berry M V and Balazs N L 1979 Am. J. Phys. 47 264
[2] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880
[3] Sivilogou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901
[4] Siviliglou G A and Christodoulides D N 2007 Opt. Lett. 32 979
[5] Gao Z H and Lv B D 2008 Chin. Phys. B 17 943
[6] Zhou G Q 2012 Acta Phys. Sin. 61 174102 (in Chinese)
[7] Bandres M A and Gutierrez-Vega J C 2007 Opt. Express 15 16719
[8] Novitsky A V and Novitsky D V 2009 Opt. Lett. 34 3430
[9] Rudnick A and Marom D M 2012 Opt. Express 19 25570
[10] Wiersma N, Marsal N, Sciamanna M and Wolfersberger D 2014 Opt. Lett. 139 5997
[11] Abdollahpour D, Suntsov S, Papazoglou D G and Tzortzakis S 2010 Phys. Rev. Lett. 105 253901
[12] Deng D and Li H 2012 Appl. Phys. B 106 677
[13] Deng D M 2011 Eur. Phys. J. D 65 553
[14] Chen C D, Chen B, Peng X and Deng D M 2015 J. Opt. 17 035504
[15] Ez-Zariy L, Hennani S, Nebdi H and Belafhal A 2014 Opt. Photon. J. 4 325
[16] Zhou Y M, Zhou G Q and Ru G Y 2014 Prog. Electromagn. Res. 40 143
[17] Deng X B, Deng D M, Chen C D and Liu C Y 2013 Acta Phys. Sin. 62 174201 (in Chinese)
[18] Yariv A and Yeh P 1984 Optical waves in crystals (New York:Wiley)
[19] Chen H C 1983 Theory of electromagnetic waves (New York:McGraw-Hill)
[20] Hu Y, Huang S, Zhang P, Lou C B, Xu J J and Chen Z G 2010 Opt. Lett. 35 3952
[21] Kaminer I, Segev M and Christodoulides D N 2011 Phys. Rev. Lett. 106 213903
[22] Dolev I, Kaminer I, Shapira A, Segev M and Arie A 2012 Phys. Rev. Lett. 108 113903
[23] Bekenstein R and Segev M 2011 Opt. Express 19 23706
[24] Enns R H, Edmundson D E, Rangneker S S and Kaplan A E 1992 Opt. Quantum Electron. 24 1295
[25] Edmundson D E and Enns R H 1995 Phys. Rev. A 51 2491
[26] Edmundson D E 1997 Phys. Rev. E 55 7636
[27] Desyatnikov A S, Mihalache D, Mazilu D, Malomed B A and Lederer F 2007 Phys. Lett. A 364 231
[28] Zhang Y Q, Belic M, Wu Z K, Zheng H B, Lu K Q, Li Y Y and Zhang Y P 2013 Opt. Lett. 38 4585
[29] Zhang Y Q, Belic M, Zheng H B, Chan H X, Li C B, Li Y Y and Zhang Y P 2014 Opt. Express 22 7160
[30] Boyd R W 2008 Nonlinear Optics, 3rd edn. (Amsterdam:Academic Press)
[31] Zhang Y, Skupin S, Maucher F, Pour A G, Lu K and Krolikowski W 2010 Opt. Express 18 27846
[1] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友)†. Chin. Phys. B, 2021, 30(1): 018703.
[2] Theoretical study of the hyperfine interaction constants, Landé g-factors, and electric quadrupole moments for the low-lying states of the 61Ni q+ ( q= 11, 12, 14 , and 15) ions
Ting-Xian Zhang(张婷贤), Yong-Hui Zhang(张永慧), Cheng-Bin Li(李承斌), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(1): 013101.
[3] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[4] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉)‡. Chin. Phys. B, 2021, 30(1): 017503.
[5] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[6] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[7] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[8] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[9] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[10] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[11] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[12] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[13] Lump and interaction solutions to the (3+1)-dimensional Burgers equation
Jian Liu(刘健), Jian-Wen Wu(吴剑文). Chin. Phys. B, 2020, 29(3): 030201.
[14] Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation
Ya-Ping Ma(马亚萍), Hui Zhang(张辉). Chin. Phys. B, 2020, 29(3): 038901.
[15] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
No Suggested Reading articles found!