Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078402    DOI: 10.1088/1674-1056/25/7/078402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Power-combining based on master—slave injection-locking magnetron

Ping Yuan(袁萍), Yi Zhang(张益), Wenjun Ye(叶文军), Huacheng Zhu(朱铧丞), Kama Huang(黄卡玛), Yang Yang(杨阳)
College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
Abstract  

A microwave power-combining system composed of two Panasonic 2M244-M1 magnetrons based on master-slave injection-locking is demonstrated in this paper. The principle of master-slave injection-locking and the locking condition are theoretical analyzed. Experimental results are consistent with the theoretical analysis and the experimental combined efficiency is higher than 96%. Compared with the external-injection-locked system, the power-combining based on the master-slave injection-locking magnetron is superior by taking out the external solid-state driver and the real-time phase control system. Thus, this power-combining system has great potential for obtaining a high efficiency, high stability, low cost, and high power microwave source.

Keywords:  magnetron      power-combining      master-slave injection-locking      combined efficiency  
Received:  01 February 2016      Revised:  03 March 2016      Published:  05 July 2016
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  88.05.Bc (Energy efficiency; definitions and standards)  
  88.80.hp (Radio-frequency power transmission)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).

Corresponding Authors:  Yang Yang     E-mail:  yyang@scu.edu.cn

Cite this article: 

Ping Yuan(袁萍), Yi Zhang(张益), Wenjun Ye(叶文军), Huacheng Zhu(朱铧丞), Kama Huang(黄卡玛), Yang Yang(杨阳) Power-combining based on master—slave injection-locking magnetron 2016 Chin. Phys. B 25 078402

[1] Jones D A, Lelyveld T P, Mavrofidis S D, Kingman S W and Miles N J 2002 Resour. Conserv. Recy. 34 75
[2] Jin Y M and Chen J M 2002 Tech. Equip. Enviro. Poll. Cont. 12 15
[3] Zhu J H, Pallavkar S, Chen M J, Yerra N, Luo Z P, Colorado H A, Lin H F, Haldolaarachchige N, Khasanov A, Ho T C, Young D P, Wei S Y and Guo Z H 2013 Chem. Commun. 49 258
[4] Booske J H 2008 Phys. Plasmas 15 055502
[5] Sehrish S, Ahmad R, Uzma I, Ayub R, Jin W H, Xu R Z, Li P H, Khizra A and Chu P K 2015 Chin. Phys. B 24 075202
[6] Clark D E, Folz D C and West J K 2000 Mat. Sci. Eng. 287 153
[7] Groffils C B H and Luypaert P 1993 MHF, September 1993, Goteborg, Sweden, p. 28
[8] Sasaki S, Tanaka K and Maki K 2013 Proc. IEEE 101 1438
[9] Barker R J, Luhmann N C, Booske J H and Nusinovich G S 2005 Modern Microwave and Millimeter-Wave Power Electronics (Berlin: Wiley-VCH) p. 872
[10] Cruz E J, Hoff B W, Pengvanich P, Lau Y Y, Gilgenbach R M and Luginsland J W 2009 Appl. Phys. Lett. 95 19
[11] Neculaes V B, Gilgenbach R M and Lau Y Y 2004 IEEE Plasma Sci. 32 1152
[12] Woo W, Benford J, Fittinghoff D, Harteneck B, Price D, Smith R and Sze H 1989 Appl. Phys. 65 861
[13] Adler R 1946 Proc. IEEE 61 351
[14] Benford J, Sze H, Woo W, Smith R R and Harteneck B 1989 Phys. Rev. Lett. 62 969
[15] Levine J S, Aiello N, Benford J and Harteneck B 1991 Appl. Phys. 70 2838
[16] Slater J C 1947 Tech. Rep. 35 1
[17] Yue S, Zhang Z C and Gao D P 2014 Chin. Phys. B 23 088402
[18] Pengvanich P, Lau Y Y, Cruz E, Gilgenbach R M, Hoff B and Luginsland J W 2008 Phys. Plasmas 15 103104
[1] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[2] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[3] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[4] Theoretical and experimental study on frequency pushing effect of magnetron
Kang Li(李慷), Yi Zhang(张益), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2019, 28(11): 118402.
[5] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[6] Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate
H Mahmodi, M R Hashim. Chin. Phys. B, 2017, 26(5): 056801.
[7] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[8] Structural, optical, and electrical properties of Cu-doped ZrO2 films prepared by magnetron co-sputtering
Nian-Qi Yao(姚念琦), Zhi-Chao Liu(刘智超), Guang-Rui Gu(顾广瑞), Bao-Jia Wu(吴宝嘉). Chin. Phys. B, 2017, 26(10): 106801.
[9] Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
Jin-Long Jiang(姜金龙), Yu-Bao Wang(王玉宝), Qiong Wang(王琼), Hao Huang(黄浩), Zhi-Qiang Wei(魏智强), Jun-Ying Hao(郝俊英). Chin. Phys. B, 2016, 25(4): 048101.
[10] Analysis and experiments of self-injection magnetron
Yi Zhang(张益), Wen-Jun Ye(叶文军), Ping Yuan(袁萍), Huan-Cheng Zhu(朱铧丞), Yang Yang(杨阳), Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2016, 25(4): 048402.
[11] Modeling and experimental studies of a side band power re-injection locked magnetron
Wen-Jun Ye(叶文军), Yi Zhang(张益), Ping Yuan(袁萍), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2016, 25(12): 128402.
[12] Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons
Song Yue(岳松), Dong-ping Gao(高冬平), Zhao-chuan Zhang(张兆传), Wei-long Wang(王韦龙). Chin. Phys. B, 2016, 25(11): 118403.
[13] Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas
Yan Zhao(赵艳), Wei Gao(高伟), Bo Xu(徐博), Ying-Ai Li(李英爱), Hong-Dong Li(李红东), Guang-Rui Gu(顾广瑞), Hong Yin(殷红). Chin. Phys. B, 2016, 25(10): 106801.
[14] Effects of N2/O2 flow rate on the surface properties and biocompatibility of nano-structured TiOxNy thin films prepared by high vacuum magnetron sputtering
Sehrish Saleem, R. Ahmad, Uzma Ikhlaq, R. Ayub, Jin Wei Hong, Xu Rui Zhen, Li Peng Hui, Khizra Abbas, Paul K. Chu. Chin. Phys. B, 2015, 24(7): 075202.
[15] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei, Shen Hong-Lie, Jin Jia-Le, Li Jin-Ze, Ma Yue. Chin. Phys. B, 2015, 24(5): 056805.
No Suggested Reading articles found!