Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074204    DOI: 10.1088/1674-1056/25/7/074204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure

Ghahraman Solookinejad, M Panahi, E Ahmadi, Seyyed Hossein Asadpour
Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
Abstract  In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.
Keywords:  Kerr nonlinearity      graphene nanostructure      linear absorption  
Received:  11 January 2016      Revised:  12 February 2016      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
Corresponding Authors:  Seyyed Hossein Asadpour     E-mail:  S.Hosein.Asadpour@gmail.com

Cite this article: 

Ghahraman Solookinejad, M Panahi, E Ahmadi, Seyyed Hossein Asadpour Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure 2016 Chin. Phys. B 25 074204

[1] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[2] Zhao Y, Huang D and Wu C 1996 J. Opt. Soc. Am. B: Opt. Phys. 13 1614
[3] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[4] Wu Y and Yang X 2004 Phys. Rev. A 70 053818
[5] Wang Z and Jiang J 2010 Phys. Lett. A 374 4853
[6] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[7] Si L G, Yang W X and Yang X 2009 JOSA B 26 478
[8] Wu Y and Yang X 2007 Phys. Rev. B 76 054425
[9] Wang Z, Shui T and Yu B 2014 Opt. Commun. 315 263
[10] Si L G, Yang W X, Lou X Y, Hao X Y and Yang X 2010 Phys. Rev. A 82 013836
[11] Wang Z and Yu B 2014 Laser Phys. Lett. 11 035201
[12] Li L H, Lou X Y, Luo J M and Huang Q J 2006 Phys. Rev. A 74 035801
[13] Wang Z and Xu M 2009 Opt. Commun. 282 1574
[14] Lu X Y, Li J H, Bing L J and Ming L J 2006 J. Phys. B 39 5161
[15] Wang Z, Chen A X, Bai Y, Yang W X and Lee R K 2012 JOSA B 29 2891
[16] Xiao Y F, Sahin K, Gaddam V, Hua C, Imoto N and Yang L 2008 Opt. Express 16 26
[17] Chuang I L and Yamamoto Y 1996 Phys. Rev. Lett. 76 4281
[18] Howell J and Yeazell J 2000 Phys. Rev. A 62 032311
[19] Tikhonenko V, Christou J and Davies B 1998 Phys. Rev. Lett. 76 2698
[20] Doai V, Khoa L, Bang D X and Huy N 2015 Physica Scripta 90 045502
[21] Tian S C, Wan R G, Rong E, Wu J M, Wang H, Shu L J, Tong S L, Ning C Z and Qiang Y 2015 Physica E 69 349
[22] Peng Yandong Y, Jiang A, Meng L and Liu L 2014 Eur. Phys. J. D 68 152
[23] Wu J L, Li J B, Lü H, Zheng X Y and Anshou 2012 Opt. Commun. 285 1424
[24] Yavuz D and Sikes D E 2010 Phys. Rev. A 81 035804
[25] Yan X, Wang L, Yin B, Zheng W, Song H, Zhang J and Peng Y 2008 Phys. Lett. A 372 6456
[26] Niu Y and Gong S 2006 Phys. Rev. A 73 053811
[27] Niu Y, Gong S, Li R, Xu Z and Liang X 2005 Opt. Lett. 30 3371
[28] Asadpour S H, Sahrai M, Soltani A, Hamedi H R 2012 Phys. Lett. A 376 147
[29] Hamedi H R and Juzeliūnas G 2015 Phys. Rev. A 91 053823
[30] Asadpour S H, Hamedi H R and Sahrai M 2012 J. Lumin. 132 2188
[31] Asadpour S H, Hamedi H R, Eslami-Majd A and Sahrai M 2011 Physica E 44 464
[32] Asadpour S H, Sahrai M, Sadighi-Bonabi R, Soltani A and Mahrami H 2011 Physica E 43 1759
[33] Asadpour S H and Soleimani H R 2015 EPJ Plus 30 1
[34] Asadpour S H and Soleimani H R 2014 Physica B 449 77
[35] Feili S and Hamedi H R 2014 Opt. Commun. 315 116
[36] Sadowski M L, Martinez G, Potemski M, Berger C and Heer W 2006 Phys. Rev. Lett. 97 266405
[37] Abergel D S L and Fal'ko V I 2007 Phys. Rev. B 75 155430
[38] Ho Y H, Chiu Y H, Lin D H, Chang C P and Lin M F 2010 ACS Nano 4 1465
[39] Booshehri L G, Mielke C H, Rickel D G, Crooker S A, Zhang Q, Ren L, Haroz E H, Rustagi A, Stanton C J, Jin Z, Sun Z, Yan Z, Tour J M and Kono J 2012 Phys. Rev. B 85 205407
[40] Nair R, Blake P, Grigorenko A N, Novoselov K N, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[41] Castro N A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[42] Yankowitz M, Xue J M, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382
[43] Ding C, Yu R, Li J H, Hao X and Wu Y 2014 J. Appl. Phys. 115 234301
[44] Ding C, Yu R, Li J H, Hao X and Wu Y 2014 Phys. Rev. A 90 043819
[45] Yao X H and Belyanin A 2012 Phys. Rev. Lett. 108 255503
[46] Tokman M, Yao X H and Belyanin A 2014 Phys. Rev. Lett. 110 077404
[47] Yao X H and Belyanin A 2013 J. Phys.: Conden. Matter 25 054203
[48] Yao X H, Tokman M and Belyanin A 2014 Proceedings of SPIE 8980, Physics and Simulation of Optoelectronic Devices XXII p. 89801A
[49] Asadpour S H and Soleimani H R 2016 Laser Phys. Lett. 13 015204
[50] Hamedi H R and Asadpour S H 2015 J. Appl. Phys. 117 183101
[51] Asadpour S H, Hamedi H R and Soleimani H R 2015 Laser Phys. Lett. 12 045202
[52] Brazhnikov D V, Taïchenachev A V, Tumaïkin A M, Yudin V I, Zibrov S A, Dudin Y, Vasil'ev V V and Velichansky V L 2006 JETP Lett. 83 64
[53] Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P and Stormer H L 2007 Phys. Rev. Lett. 197403
[54] Nesterov M L, Bravo-Abad J, Nikitin A Y, Garcia-Vidal F J and Martin-Moreno L 2013 Laser Photon. Rev. 7 L7
[55] Dong H, Conti C, Marini A and Biancalana F 2013 J. Phys. B: At. Mol. Opt. Phys. 46 155401
[56] Cheh J and Zhao H 2011 arXiv:1107.3696
[57] Lukin M D, Yelin S F, Fleischhauer M and Scully M O 1999 Phys. Rev. A 60 3225
[58] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge, England: Cambridge University Press)
[59] Guo G Y and Ebert H 1995 Phys. Rev. B 51 12633
[60] Kosevich Y A 1997 Solid State Commun. 104 321
[1] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[2] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[3] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[4] Nonlinear behavior of the population dynamics of three-level systems in the presence of single photon absorption
Allam Srinivasa Rao. Chin. Phys. B, 2019, 28(2): 024211.
[5] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
[6] Optical bistability and multistability via double dark resonance in graphene nanostructure
Seyyed Hossein Asadpour, G Solookinejad, M Panahi, E Ahmadi Sangachin. Chin. Phys. B, 2016, 25(6): 064201.
[7] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[8] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[9] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[10] Rectification effect in asymmetric Kerr nonlinear medium
Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟). Chin. Phys. B, 2014, 23(6): 064213.
[11] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[12] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[13] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[14] Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Sun Li-Li (孙立莉), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030313.
[15] Enhanced Kerr nonlinearity in a left-handed three-level atomic system driven by a bichromatic field
Yang Xiao-Yu (杨晓雨), Jiang Yong-Yuan (姜永远). Chin. Phys. B, 2013, 22(11): 114204.
No Suggested Reading articles found!