Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 073401    DOI: 10.1088/1674-1056/25/7/073401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Differential cross sections of positron—hydrogen collisions

Rong-Mei Yu(于荣梅)1, Chun-Ying Pu(濮春英)1, Xiao-Yu Huang(黄晓玉)1, Fu-Rong Yin(殷复荣)1, Xu-Yan Liu(刘旭焱)1, Li-Guang Jiao(焦利光)2, Ya-Jun Zhou(周雅君)3
1 College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
2 College of Physics, Jilin University, Changchun 130012, China;
3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  

We make a detailed study on the angular differential cross sections of positron-hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.

Keywords:  differential cross section      resonance      positron      hydrogen  
Received:  13 October 2015      Revised:  15 January 2016      Accepted manuscript online: 
PACS:  34.80.Uv (Positron scattering)  
Fund: 

Project supported by the Nanyang Normal University Science Foundation of China (Grant No. ZX2013017) and the National Natural Science Foundation of China (Grant Nos. 11174066, 61306007, and U1304114).

Corresponding Authors:  Ya-Jun Zhou     E-mail:  zuolouzhoudx@163.com

Cite this article: 

Rong-Mei Yu(于荣梅), Chun-Ying Pu(濮春英), Xiao-Yu Huang(黄晓玉), Fu-Rong Yin(殷复荣), Xu-Yan Liu(刘旭焱), Li-Guang Jiao(焦利光), Ya-Jun Zhou(周雅君) Differential cross sections of positron—hydrogen collisions 2016 Chin. Phys. B 25 073401

[1] Charlton M and Humberston J M 2001 Positron Physics (Cambridge: Cambridge University Press)
[2] Ho Y K 2008 Nucl. Instrum. Meth. B 266 516
[3] Ho Y K 1992 Hyperfine Interactions 73 109
[4] Charlton M, Eades J, Horvath D, Hughes R J and Zimmermann C 1994 Phys. Rep. 241 65
[5] Mitroy J and Stelbovics A T 1994 Phys. Rev. Lett. 72 3495
[6] Mitroy J 1995 Phys. Rev. A 52 2859
[7] Doolen G D, Nuttall J and Wherry C 1978 Phys. Rev. Lett. 40 313
[8] Ho Y K and Yan Z C 2004 Phys. Rev. A 70 032716
[9] Yan Z C and Ho Y K 2008 Phys. Rev. A 77 030701
[10] Mitroy J and Stelbovics A T 1994 J. Phys. B 27 3257
[11] Seiler G J, Oberoi R S and Callaway J 1971 Phys. Rev. A 3 2006
[12] Mitroy J and Ratnavelu K 1995 J. Phys. B 28 287
[13] Lin C D 1995 Phys. Rep. 257 1
[14] Zhou Y and Lin C D 1995 J. Phys. B 28 4907
[15] Gien T T 1995 J. Phys. B 28 L313
[16] Gien T T 1996 J. Phys. B 29 2127
[17] Mandelshtam V A, Ravari T R and Taylor H S 1993 Phys. Rev. Lett. 70 1932
[18] Kar S and Ho Y K 2005 J. Phys. B 38 3299
[19] Roy U 2009 Indian J. Phys. 83 1637
[20] Varga K, Mitroy J, Mezei J Z and Kruppa A T 2008 Phys. Rev. A 77 044502
[21] Buhring W 1969 Z. Phys. 208 286
[22] Wadehra J M, Stein T S and Kauppila W E 1984 Phys. Rev. A 29 2912
[23] Mandal P, Kar S and Roy U 1998 Nucl. Instrum. Meth. B 143 32
[24] Ghoshal A and Mandal P 2005 Phys. Rev. A 72 042710
[25] Zhou Y, Ratnavelu K and McCarthy I E 2005 Phys. Rev. A 71 042703
[26] McCarthy I E and Stelbovics A T 1983 Phys. Rev. A 28 2693
[27] Stelbovics A T and Shang B 1992 Phys. Rev. A 46 3959
[28] Jiao L, Zhou Y and Wang Y 2010 Phys. Rev. A 81 042713
[29] Wang Y, Zhou Y, Jiao L and Ratnavelu K 2008 Chin. Phys. Lett. 25 2027
[30] Liu F, Cheng Y, Zhou Y and Jiao L 2011 Phys. Rev. A 83 032718
[31] Jiao L, Zhou Y, Cheng Y and Yu R 2012 Eur. Phys. J. D 66 48
[32] Yu R, Cheng Y, Jiao L and Zhou Y 2012 Chin. Phys. Lett. 29 053401
[33] Yu R, Zhou Y, Jiao L and Cheng Y 2012 Chin. Phys. B 21 013404
[34] Yu R, Cheng Y, Wang Y and Zhou Y 2012 Chin. Phys. B 21 053402
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[3] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[6] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[9] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[10] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[11] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[12] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[13] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[14] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[15] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
No Suggested Reading articles found!