Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067802    DOI: 10.1088/1674-1056/25/6/067802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film

Dan-Dan Bu(布丹丹), Chun-Sheng Yue(岳春生), Guang-Qiu Zhang(张广求), Yong-Tao Hu(胡永涛), Sheng Dong(董胜)
National Digital Switching System Engineering & Technological R & D Center, Zhengzhou 450002, China
Abstract  

A simple design of broadband metamaterial absorber (MA) based on resistive film is numerically presented in this paper. The unit cell of this absorber is composed of crossed rectangular rings-shaped resistive film, dielectric substrate, and continuous metal film. The simulated results indicate that the absorber obtains a 12.82-GHz-wide absorption from about 4.75 GHz to 17.57 GHz with absorptivity over 90% at normal incidence. Distribution of surface power loss density is illustrated to understand the intrinsic absorption mechanism of the structure. The proposed structure can work at wide polarization angles and wide angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. Finally, the multi-reflection interference theory is involved to analyze and explain the broadband absorption mechanism at both normal and oblique incidence. Moreover, the polarization-insensitive feature is also investigated by using the interference model. It is seen that the simulated and calculated absorption rates agree fairly well with each other for the absorber.

Keywords:  broadband      metamaterial absorber      resistive film      multi-reflection interference theory  
Received:  26 December 2015      Revised:  08 March 2016      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  42.25.Bs (Wave propagation, transmission and absorption)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Corresponding Authors:  Chun-Sheng Yue     E-mail:  csyzhang@163.com

Cite this article: 

Dan-Dan Bu(布丹丹), Chun-Sheng Yue(岳春生), Guang-Qiu Zhang(张广求), Yong-Tao Hu(胡永涛), Sheng Dong(董胜) Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film 2016 Chin. Phys. B 25 067802

[1] Salisbury W W (U.S. Patent) 2 599 944 [1952-06-10]
[2] Knott E F and Langseth K B 1980 IEEE Trans. Antennas Propag. 28 137
[3] Landy N I, Sajuyigbe S and Mock J J 2008 Phys. Rev. Lett. 100 207402
[4] Landy N I, Bingham C M and Tyler T 2009 Phys. Rev. B 79 125104
[5] Wang G D, Chen J F, Hu X W, Chen Z Q and Liu M H 2014 Prog. Electromag. Res. 145 175
[6] Shi J X, Zhang W C, Xu W, Zhu Q, Jiang X, Li D D, Yan C C and Zhang D H 2015 Chin. Phys. Lett. 32 094204
[7] Lee K T, Ji C G and Guo L J 2016 Appl. Phys. Lett. 108 031107
[8] Sood D and Tripathi C C 2015 Prog. Electromag. Res. 44 39
[9] Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D and Lin B Q 2010 Chin. Phys. Lett. 27 117802
[10] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X and Wang X 2012 J. Appl. Phys. 111 044902
[11] Yang G H, Liu X X, Lv Y L, Fu J H, Wu Q and Gu X M 2014 J. Appl. Phys. 115 17E523
[12] Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D and Ma H 2011 Acta Phys. Sin. 60 087802 (in Chinese)
[13] Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F and Deng L J 2013 IEEE Trans. Anten. Propag. 61 976
[14] Chen J F, Hu Z Y, Wang G D, Huang X T, Wang S M, Hu X W and Liu M H 2015 IEEE Trans. Anten. Propag. 63 4367
[15] Wen Q Y, Xie Y S and Zhang H W 2009 Opt. Express 17 20256
[16] Wen Q Y, Zhang H W and Xie Y S 2010 Chin. J. Opt. Appl. Opt. 3 79 (in Chinese)
[17] Chen H T, Zhou J F, O'Hara J F, Chen F, Azad A K and Taylor A J 2010 Phys. Rev. Lett. 105 073901
[18] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q and Cui T J 2011 J. Appl. Phys. 110 014909
[19] Chen H T 2012 Opt. Express 20 7165
[20] Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L and Cui T J 2012 Appl. Phys. Lett. 101 154102
[21] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2014 Chin. Phys. B 23 017802
[22] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Azad A K, Taylor A J and Chen H T 2012 Appl. Phys. Lett. 101 101102
[23] Wang H T, Chen W, Huang Y and Wen G 2013 AIP Adv. 3 102118
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[5] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[6] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[7] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[8] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[9] Broadband topological valley-projected edge-states transport in composite structure phononic crystal
Hong-Yong Mao(毛鸿勇), Fu-Jia Chen(陈福家), Kai Guo(郭凯), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2021, 30(8): 084302.
[10] A radar-infrared compatible broadband absorbing surface: Design and analysis
Qing-Tao Yu(余庆陶), Yuan-Song Zeng(曾元松), and Guo-Jia Ma(马国佳). Chin. Phys. B, 2021, 30(7): 078402.
[11] Retrieval of the effective constitutive parameters from metamaterial absorbers
Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南). Chin. Phys. B, 2021, 30(11): 117803.
[12] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
[13] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[14] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[15] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
No Suggested Reading articles found!