Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 046301    DOI: 10.1088/1674-1056/25/4/046301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions

Ting Wang(王婷)1, Hui Wang(王辉)2, Mei-Ping Sheng(盛美萍)2, Qing-Hua Qin(秦庆华)1
1 School of Marine Science and Technology, Northwestern Polytecnical University, Xi'an 710072, China;
2 Research School of Engineering, Australian National University, Acton, ACT 2601, Australia
Abstract  A two-dimensional phononic crystal (PC) structure possessing a relatively low frequency range of complete bandgap is presented. The structure is composed of periodic spindle-shaped plumbum inclusions in a rubber matrix which forms a square lattice. The dispersion relation, transmission spectrum and displacement field are studied using the finite element method in conjunction with the Bloch theorem. Numerical results show that the present PC structure can achieve a large complete bandgap in a relatively low frequency range compared with two inclusions of different materials, which is useful in low-frequency noise and vibration control and can be designed as a low frequency acoustic filter and waveguides. Moreover, the transmission spectrum and effective mass are evaluated to validate the obtained band structure. It is interesting to see that within the band gap the effective mass becomes negative, resulting in an imaginary wave speed and wave exponential attenuation. Finally, sensitivity analysis of the effect of geometrical parameters of the presented PC structure on the lowest bandgap is performed to investigate the variations of the bandgap width and frequency.
Keywords:  phononic crystal      spindle-shaped inclusion      transmission spectrum      bandgap  
Received:  22 September 2015      Revised:  19 October 2015      Accepted manuscript online: 
PACS:  63.20.-e (Phonons in crystal lattices)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  62.30.+d (Mechanical and elastic waves; vibrations)  
Fund: Project supported by the China Scholarship Council.
Corresponding Authors:  Ting Wang     E-mail:  WT323@mail.nwpu.edu.cn

Cite this article: 

Ting Wang(王婷), Hui Wang(王辉), Mei-Ping Sheng(盛美萍), Qing-Hua Qin(秦庆华) Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions 2016 Chin. Phys. B 25 046301

[1] Maldovan M 2013 Nature 503 209
[2] Ji Hong W, Dian Long Y, Gang W, Hong Gang Z, Yao Zong L and Xi Sen W 2007 Chin. Phys. Lett. 24 1305
[3] Charles C, Bonello B and Ganot F 2006 Ultrasonics 44, Supplement e1209
[4] Yan Z Z and Zhang C Z 2012 Physica B: Condens. Matter 407 1014
[5] Mohammadi S, Eftekhar A A, Khelif A, Hunt W D and Adibi A 2008 Appl. Phys. Lett. 92 221905
[6] Peng P, Mei J and Wu Y 2012 Phys. Rev. B 86 134304
[7] Song G H, Chen J J and Han X 2014 Jpn. J. Appl. Phys. 53 094301
[8] Vasseur J, Hladky Hennion A C, Dubus B, Djafari Rouhani B and Morvan B 2008 J. Acoust. Soc. Am. 123 3039
[9] Yu D, Wen J, Shen H, Xiao Y and Wen X 2012 Phys. Lett. A 376 626
[10] Wu L Y and Chen L W 2012 Appl. Acoust. 73 312
[11] Feng C H, Jin C H, Tsun C H, Chin H W and Pin C 2011 J. Phys. D: Appl. Phys. 44 375101
[12] Huang P P Y Y W, Wu F G, Z X, Li J and Hu A Z 2015 Chin. Phys. B 24 54301
[13] Yao Y, Wu F, Hou Z and Xin Z 2011 Ultrasonics 51 602
[14] Yu K P, Chen T N, Wang X P and Zhou A A 2012 Physica B: Condens. Matter 407 4287
[15] Yu K, Chen T and Wang X 2013 J. Appl. Phys. 113 134901
[16] Xu Y L, Tian X G and Chen C Q 2012 Physica B: Condens. Matter 407 1995
[17] Li Y, Chen T, Wang X, Yu K and Song R 2015 Physica B: Condens. Matter 456 261
[18] Gao N, Wu J H and Yu L 2015 Ultrasonics 56 287
[19] Chen J, Xia Y, Han X and Zhang H 2012 Ultrasonics 52 920
[20] Wang K, Liu Y and Yang Q S Ultrasonics 61 25
[21] Miniaci M, Marzani A, Testoni N and De Marchi L 2015 Ultrasonics 56 251
[22] Chen A L, Liang T L and Wang Y S 2015 Chin. Phys. B 24 066101
[23] Wang K, Liu Y and Yang Q S 2015 Ultrasonics 61 25
[24] Yu K, Chen T, Wang X and Zhou A 2013 J. Phys. Chem. Solids 74 1146
[25] Chen J J, Qin B and Cheng J C 2005 Chin. Phys. Lett. 22 1706
[26] Cheng Y, Liu X J and Wu D J 2011 J. Appl. Phys. 109 064904
[27] Zhang H B, Chen J J and Han X 2012 J. Appl. Phys. 112 054503
[28] Weng C N, Chang P W and Chen T Y 2014 Procedia Engineering 79 622
[29] Auld B A 1973 Acoustic Fields and Waves in Solids, Рипол Классии
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[5] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[6] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[9] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[10] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[11] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[12] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[13] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[14] Review of deep ultraviolet photodetector based on gallium oxide
Yuan Qin(覃愿), Shibing Long(龙世兵), Hang Dong(董航), Qiming He(何启鸣), Guangzhong Jian(菅光忠), Ying Zhang(张颖), Xiaohu Hou(侯小虎), Pengju Tan(谭鹏举), Zhongfang Zhang(张中方), Hangbing Lv(吕杭炳), Qi Liu(刘琦), Ming Liu(刘明). Chin. Phys. B, 2019, 28(1): 018501.
[15] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
No Suggested Reading articles found!