Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 038503    DOI: 10.1088/1674-1056/25/3/038503

Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature

Liuan Li(李柳暗)1, Jiaqi Zhang(张家琦)2, Yang Liu(刘扬)1, Jin-Ping Ao(敖金平)2
1. School of Microelectronics, Sun Yat-Sen University, Guangzhou 510275, China;
2. Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
Abstract  In this paper, TiN/AlOx gated AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 ℃ with the contact resistance approximately 1.6 Ω· mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/AlOx gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AlGaN/GaN MOS-HFETs.
Keywords:  metal-oxide-semiconductor heterostructure field-effect transistors      low temperature ohmic process      inductively coupled plasma  
Received:  14 June 2015      Revised:  11 November 2015      Published:  05 March 2016
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.61.Ey (III-V semiconductors)  
  81.15.Cd (Deposition by sputtering)  
Fund: Project supported by the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260).
Corresponding Authors:  Yang Liu, Jin-Ping Ao     E-mail:;

Cite this article: 

Liuan Li(李柳暗), Jiaqi Zhang(张家琦), Yang Liu(刘扬), Jin-Ping Ao(敖金平) Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature 2016 Chin. Phys. B 25 038503

[1] Keller S, Wu Y F, Parish G, Zhang N, Xu J J, Keller B P, DenBaars S P and Mishra U K 2001 IEEE Trans. Electron Devices 48 552
[2] Mishra U K, Shen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
[3] Li L, Nakamura R, Wang Q, Jiang Y and Ao J P 2014 Nanoscale Res. Lett. 9 590
[4] Li L, Kishi A, Shiraishi T, Jiang Y, Wang Q, Ao J P and Ohno Y 2013 Jpn. J. Appl. Phys. 52 11NH01
[5] Li L, Xu Y, Wang Q, Nakamura R, Jiang Y and Ao J P 2015 Semicond. Sci. Technol. 30 015019
[6] Nakano T, Chiba M and Akazawa M 2014 Jpn. J. Appl. Phys. 53 04EF06
[7] Wang Q, Jiang Y, Zhang J, Li L, Kawaharada K, Wang D and Ao J P 2015 Appl. Phys. Express 8 046501
[8] Apajna M and Kuzmík J 2012 Appl. Phys. Lett. 100 113509
[9] Kang H S, Pratap R M, Kim D S, Kim K W, Ha J B, Lee Y S, Choi H C and Lee J H 2013 J. Phys. D: Appl. Phys. 46 155101
[10] Pavunny S P, Misra P, Thomas R, Kumar A, Schubert J, Scott J F and Katiyar R S 2013 Appl. Phys. Lett. 102 192904
[11] Yan D, Lu H, Cao D, Chen D, Zhang R and Zheng Y 2010 Appl. Phys. Lett. 97 153503
[1] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[2] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[3] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[4] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[5] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing, Zhao Shu-Xia, Gao Fei, Zhang Yu-Ru, Li Xue-Chun, Wang You-Nian. Chin. Phys. B, 2015, 24(11): 115201.
[6] Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias
Gao Fei, Zhang Yu-Ru, Zhao Shu-Xia, Li Xue-Chun, Wang You-Nian. Chin. Phys. B, 2014, 23(11): 115202.
[7] Changes of the electron dynamics in hydrogen inductively coupled plasma
Gao Fei, Liu Wei, Zhao Shu-Xia, Zhang Yu-Ru, Sun Chang-Sen, Wang You-Nian. Chin. Phys. B, 2013, 22(11): 115205.
[8] Spatial variation behaviors of argon inductively coupled plasma during discharge mode transition
Gao Fei, Li Xue-Chun, Zhao Shu-Xia, Wang You-Nian. Chin. Phys. B, 2012, 21(7): 075203.
[9] Identification and elimination of inductively coupled plasma-induced defects in AlxGa1 - xN/GaN heterostructures
Lin Fang, Shen Bo, Lu Li-Wu, Liu Xin-Yu, Wei Ke, Xu Fu-Jun, Wang Yan, Ma Nan, Huang Jun. Chin. Phys. B, 2011, 20(7): 077303.
[10] Columnar growth of crystalline silicon films on aluminium-coated glass by inductively coupled plasma CVD at room temperature
Wang Jin-Xiao, Qin Yan-Li, Yan Heng-Qing, Gao Ping-Qi, Li Jun-Shuai, Yin Min, He De-Yan. Chin. Phys. B, 2009, 18(2): 773-777.
[11] Improving the uniformity of RF-plasma density by a humped variable-gap spiral antenna
Xu Xu, Li Lin-Sen, Liu Feng, Zhou Qian-Hong, Liang Rong-Qing. Chin. Phys. B, 2008, 17(11): 4242-4246.
[12] RF electric field penetration and power deposition into nonequilibrium planar-type inductively coupled plasmas
Mao Ming, Wang Shuai, Dai Zhong-Ling, Wang You-Nian. Chin. Phys. B, 2007, 16(7): 2044-2050.
No Suggested Reading articles found!