Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 028201    DOI: 10.1088/1674-1056/25/2/028201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

In-situ characterization of electrochromism based on ITO/PEDOT:PSS towards preparation of high performance device

Xue-Jin Wang(王学进)1, Zheng-Fei Guo(郭正飞)1, Jing-Yu Qu(曲婧毓)1,Kun Pan(潘坤)1, Zheng Qi(祁铮)1, Hong Li(李泓)2
1. College of Science, China Agricultural University, 17 Qinghua Donglu, Haidian District, Beijing 100083, China;
2. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is usually sandwiched between indium tin oxide (ITO) and a functional polymer in order to improve the performance of the device. However, because of the strong acidic nature of PEDOT:PSS, the instability of ITO/PEDOT:PSS interface is also observed. The mechanism of degradation of the device remains is unclear and needs to be further studied. In this article, we investigate the in-situ electrochromism of PEDOT:PSS to disclose the cause of the degradation. X-ray photoelectron spectroscopy (XPS) was used to characterize the PEDOT:PSS films, as well as the PEDOT:PSS plus polyethylene glycol (PEG) films with and without indium ions. The electrochromic devices (ECD) based on PEDOT:PSS and PEG with and without indium ions are carried out by in-situ micro-Raman and laser reflective measurement (LRM). For comparison, ECD based on PEDOT:PSS and PEG films with LiCl, KCl, NaCl or InCl3 are also investigated by LRM. The results show that PEDOT:PSS is further reduced when negatively biased, and oxidized when positively biased. This could identify that PEDOT:PSS with indium ions from PEDOT:PSS etching ITO will lose dopants when negatively biased. The LRM shows that the device with indium ions has a stronger effect on the reduction property of PEDOT:PSS-PEG film than the device without indium ions. The contrast of the former device is 44%, that of the latter device is about 3%. The LRM also shows that the contrasts of the device based on PEDOT:PSS+PEG with LiCl, KCl, NaCl, InCl3 are 30%, 27%, 15%, and 18%, respectively.

Keywords:  PEDOT:PSS      electrochromism      electrochromic devices      interface  
Received:  17 June 2015      Revised:  09 October 2015      Accepted manuscript online: 
PACS:  82.35.Cd (Conducting polymers)  
  82.47.Tp (Electrochemical displays)  
  82.47.Jk (Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

Corresponding Authors:  Xue-Jin Wang     E-mail:  xjwang@cau.edu.cn

Cite this article: 

Xue-Jin Wang(王学进), Zheng-Fei Guo(郭正飞), Jing-Yu Qu(曲婧毓),Kun Pan(潘坤), Zheng Qi(祁铮), Hong Li(李泓) In-situ characterization of electrochromism based on ITO/PEDOT:PSS towards preparation of high performance device 2016 Chin. Phys. B 25 028201

[1] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L and Holmes A B 1990 Nature 347 539
[2] Carter S A, Angelopoulos M, Karg S, Brock P J and Scott J C 1997 Appl. Phys. Lett. 70 2067
[3] Hao Z H, Hu Z Y, Zhang J J, Hao Q Y and Zhao Y 2011 Acta Phys. Sin. 60 117106 (in Chinese)
[4] Hou T, Liang C J, Zhang F J, He Z Q and Sun K 2014 Chin. Phys. Lett. 31 028801
[5] Zhuo Z L, Wang Y S, He D W and Fu M 2014 Chin. Phys. B 23 098802
[6] Kim Y, Ballantyne A M, Nelson J and Bradley D D C 2009 Organic Electronics 10 205
[7] Xing Y J, Qian M F, Guo D Z and Zhang G M 2014 Chin. Phys. B 23 038504
[8] Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S and Xia R D 2010 Chin. Phys. B 19 038601
[9] Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X A, Wang L H and Huang W 2015 Chin. Phys. B 24 045201
[10] Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S and Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese)
[11] de Jong M P, van Ijzendoorn L J and de Voigt M J A 2000 Nucl. Instrum. Methods Phys. Res. Sec. B Beam Interactions with Materials and Atoms 161 207
[12] Crispin X, Marciniak S, Osikowicz W, Zotti G, Van der Gon A W D, Louwet F, Fahlman M, Groenendaal L, De Schryver F and Salaneck W R 2003 J. Polym. Sci. Part B Polymer Physics 41 2561
[13] Wong K W, Yip H L, Luo Y, Wong K Y, Lau W M, Low K H, Chow H F, Gao Z Q, Yeung W L and Chang C C 2002 Appl. Phys. Lett. 80 2788
[14] Wang Y, Niu Q, Hu C, Wang W, He M, Zhang Y, Li S, Zhao L, Wang X, Xu J, Zhu Q and Chen S 2011 Opt. Lett. 36 1521
[15] Jun Ho Y, Su Jin B, Hyeong Pil K, Dong Hee N, Younggu L, Jueng Gil L and Jin J 2013 J. Mater. Chem. C 1 3250
[16] Kim J, Kanwat A, Kim H M and Jang J 2014 Phys. Status Solidi (a) n/a
[17] de Kok M M, Buechel M, Vulto S I E, van de Weijer P, Meulenkamp E A, de Winter S, Mank A J G, Vorstenbosch H J M, Weijtens C H L and van Elsbergen V 2004 Phys. Status Solidi a Appl. Res. 201 1342
[18] Sakamoto S, Okumura M, Zhao Z G and Furukawa Y 2005 Chem. Phys. Lett. 412 395
[19] Kim J S, Ho P K H, Murphy C E, Seeley A, Grizzi I, Burroughes J H and Friend R H 2004 Chem. Phys. Lett. 386 2
[20] Singh V, Arora S, Arora M, Sharma V and Tandon R P 2014 Semicond. Sci. Technol. 29 045020
[21] Garreau S, Louarn G, Buisson J P, Froyer G and Lefrant S 1999 Macro-molecules 32 6807
[22] Wang X J and Wong K Y 2006 Thin Solid Films 515 1573
[23] Sakmeche N, Aaron J J, Fall M, Aeiyach S, Jouini M, Lacroix J C and Lacaze P C 1996 Chem. Commun. No. 24 2723
[24] Wang X J, Lau W M and Wong K Y 2005 App. Phys. Lett. 87 113502
[25] Alexandridis P and Holzwarth J F 1997 Langmuir 13 6074
[1] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[2] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[3] Experimental analysis of interface contact behavior using a novel image processing method
Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2021, 30(5): 054601.
[4] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[5] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[6] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[7] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[8] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[9] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[10] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[11] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[12] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[13] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[14] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
[15] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
No Suggested Reading articles found!