Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020303    DOI: 10.1088/1674-1056/25/2/020303
GENERAL Prev   Next  

Enhancing parameter precision of optimal quantum estimation by quantum screening

Huang Jiang(黄江)1, Guo You Neng(郭有能)2, Xie Qin(谢钦)1
1. Physical and Photoelectric Science Department, Guangdong Ocean University, Zhanjiang 524088, China;
2. Department of Electronic and Communication Engineering, Changsha University, Changsha 410003, China
Abstract  We propose a scheme of quantum screening to enhance the parameter-estimation precision in open quantum systems by means of the dynamics of quantum Fisher information. The principle of quantum screening is based on an auxiliary system to inhibit the decoherence processes and erase the excited state to the ground state. By comparing the case without quantum screening, the results show that the dynamics of quantum Fisher information with quantum screening has a larger value during the evolution processes.
Keywords:  quantum Fisher information      quantum screening      parameter estimation  
Received:  08 August 2015      Revised:  11 October 2015      Published:  05 February 2016
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374096), the Natural Science Foundation of Guangdong Province, China (Grants No. 2015A030310354), and the Project of Enhancing School with Innovation of Guangdong Ocean University (Grants Nos. GDOU2014050251 and GDOU2014050252).
Corresponding Authors:  Guo You Neng     E-mail:

Cite this article: 

Huang Jiang(黄江), Guo You Neng(郭有能), Xie Qin(谢钦) Enhancing parameter precision of optimal quantum estimation by quantum screening 2016 Chin. Phys. B 25 020303

[1] Li S S, Zhang Z H, Zhao W, Li Z K and Huang S L 2015 Chin. Phys. B 24 010601
[2] Cai S P, Dai L and Ni H 2013 Acta. Phys. Sin. 62 189204 (in Chinese)
[3] He Z and Yao C M 2014 Chin. Phys. B 23 110601
[4] Chen H J and Zhu K D 2015 Sci. China-Phys. Mech. Astron. 58 50301
[5] Chen Z Z, Ren X L and Tang F Q 2013 Chin. Sci. Bull. 58 2622
[6] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 4649
[7] Zhang J, Long G L, Deng Z, Liu W Z and Lu Z H 2004 Phys. Rev. A 70 062322
[8] Liang Y and Zeng H P 2014 Sci. China-Phys. Mech. Astron. 57 1218
[9] Zhang J, Itzler M A and Zbinden H 2015 Light: Science and Applications 4 286
[10] Zheng Q, Ge L, Yao Y and Zhi Q J 2015 Phys. Rev. A 91 033805
[11] Berrada K 2015 J. Opt. Soc. Am. B 32 571
[12] Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
[13] Zhong W, Zhe S, Ma J, Wang X G and Nori F 2013 Phys. Rev. A 87 022337
[14] Li Y L, Xiao X and Yao Y 2015 Phys. Rev. A 91 052105
[15] Liu W F, Ma J and Wang X G 2013 J. Phys. A: Math. Theor. 46 045302
[16] Tan Q S, Huang Y X, Yin X L, Kuang L M and Wang X G 2013 Phys. Rev. A 87 032102
[17] Li N and Luo S L 2013 Phys. Rev. A 88 014301
[18] Berrada K 2013 Phys. Rev. A 88 035806
[19] Zhong W, Liu J, Ma J and Wang X G 2014 Chin. Phys. B 23 060302
[20] Zheng Q, Yao Y and Li Y 2014 Eur. Phys. J. D 68 170
[21] Helstrom C W 1976 Quantum etection and estimation theory (New York: Academic Press)
[22] Huo W Y and Long G L 2008 New. J. Phys. 10 013026
[23] Fang Y M, Qin Z Z, Wang H L, et al. 2015 Sci. China-Phys. Mech. Astron. 58 64201
[24] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Informatin (Cambridge: Cambridge University Press)
[25] Filip R 2003 Phys. Rev. A 67 014308
[26] Mazhar A 2010 J. Pyhs. B: At. Mol. Opt. Phys. 43 045504
[27] Luis A and Perian J 1996 Phys. Rev. Lett. 76 4340
[1] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[2] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[3] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[4] Quantum estimation of detection efficiency with no-knowledge quantum feedback
Dong Xie(谢东), Chunling Xu(徐春玲). Chin. Phys. B, 2018, 27(6): 060303.
[5] Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements
Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明). Chin. Phys. B, 2018, 27(4): 040601.
[6] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[7] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[8] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[9] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
[10] Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
Wang Guo-You, Guo You-Neng, Zeng Ke. Chin. Phys. B, 2015, 24(11): 114201.
[11] Quantum Fisher information and spin squeezing in one-axis twisting model
Zhong Wei, Liu Jing, Ma Jian, Wang Xiao-Guang. Chin. Phys. B, 2014, 23(6): 060302.
[12] Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal
He Zhi, Yao Chun-Mei. Chin. Phys. B, 2014, 23(11): 110601.
[13] Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters
Li Fan, Wang Chun-Ni, Ma Jun. Chin. Phys. B, 2013, 22(10): 100502.
[14] Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method
Li Xiang-Tao,Yin Ming-Hao. Chin. Phys. B, 2012, 21(5): 050507.
[15] Parameter estimation for chaotic systems with and without noise using differential evolution-based method
Li Nian-Qiang, Pan Wei, Yan Lian-Shan, Luo Bin, Xu Ming-Feng, Jiang Ning. Chin. Phys. B, 2011, 20(6): 060502.
No Suggested Reading articles found!