Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 016101    DOI: 10.1088/1674-1056/25/1/016101
SPECIAL TOPIC—Fundamental physics research in lithium batteries Prev   Next  

FT-Raman spectroscopy study of solvent-in-salt electrolytes

Liumin Suo(索鎏敏), Zheng Fang(方铮), Yong-Sheng Hu(胡勇胜), Liquan Chen(陈立泉)
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Cation-anion interaction with different ratios of salt to solvent is investigated by FT-Raman spectroscopy. The fitting result of the C-N-C bending vibration manifests that the cation-anion coordination structure changes tremendously with the variation of salt concentration. It is well known that lithium-ion transport in ultrahigh salt concentration electrolyte is dramatically different from that in dilute electrolyte, due to high viscosity and strong cation-anion interaction. In ultrahigh salt concentrated “solvent-in-salt” electrolyte (SIS-7#), we found, on one hand, that the cation and anion in the solution mainly formed cation-anion pairs with a high Li+ coordination number ( ≥ 1), including intimate ion pairs (20.1%) and aggregated ion pairs (79.9%), which not only cause low total ionic conductivity but also cause a high lithium transference number (0.73). A possible lithium transport mechanism is proposed: in solvent-in-salt electrolytes, lithium ions' direct movement presumably depends on Li-ion exchange between aggregated ion pairs and solvent molecules, which repeats a dissolving and re-complexing process between different oxygen groups of solvent molecules.
Keywords:  FT-Raman spectroscopy      lithium-ion batteries      electrolyte      solvent-in-salt electrolytes  
Received:  26 May 2015      Revised:  15 August 2015      Published:  05 January 2016
PACS:  61.05.-a (Techniques for structure determination)  
  61.20.Gy (Theory and models of liquid structure)  
  61.20.Qg (Structure of associated liquids: electrolytes, molten salts, etc.)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB932300), the National Natural Science Foundation of China (Grant Nos. 51222210, 51472268, and 11234013), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010300).
Corresponding Authors:  Liumin Suo     E-mail:

Cite this article: 

Liumin Suo(索鎏敏), Zheng Fang(方铮), Yong-Sheng Hu(胡勇胜), Liquan Chen(陈立泉) FT-Raman spectroscopy study of solvent-in-salt electrolytes 2016 Chin. Phys. B 25 016101

[1] Bruce P G, Freunberger S A, Hardwick L J and Tarascon J M 2012 Nat. Mater. 11 19
[2] Ellis B L, Lee K T and Nazar L F 2010 Chem. Mater. 22 691
[3] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[4] Scrosati B and Garche J 2010 J. Power Sources. 195 2419
[5] Tarascon J M and Armand M 2001 Nature 414 359
[6] Suo L, Zhu Y, Han F, Gao T, Luo C, Fan X, Hu Y S and Wang C 2015 Nano Energy 13 467
[7] Ma, J, Fang, Z, Yan, Y, Yang, Z, Gu, L, Hu Y S, Li H, Wang Z and Huang X 2015 Adv. Energy Mater. 5 1500046
[8] Mu L Q, Hu Y S and Chen L Q 2015 Chine. Phys. B 24 038202
[9] Zhao L, Pan H L, Hu Y S, Li H and Chen L Q 2012 Chine. Phys. B. 21 028201
[10] Xu K 2004 Chem. Rev. 104 4303
[11] Suo L M, Hu Y S, Li H, Armand M and Chen L Q 2013 Nat. Commun. 4 1481
[12] Seo D M, Borodin O, Han S D, Boyle P D and Henderson W A 2012 J. Electrochem. Soc. 159 A1489
[13] Seo D M, Borodin O, Han S D, Ly Q, Boyle P D and Henderson W A 2012 J. Electrochem. Soc. 159 A553
[14] Umebayashi Y, Mitsugi T, Fukuda S, Fujimori T, Fujii K, Kanzaki R, Takeuchi M and Ishiguro S I 2007 J. Phys. Chem. B. 111 13028
[15] Victor P J, Das B and Hazra D K 2001 J. Phys. Chem. A 105 5960
[16] Muhuri P K, Das B and Hazra D K 1997 J. Phys. Chem. B 101 3329
[17] Goutev N, Ohno K and Matsuura H 2000 J. Phys. Chem. A 104 9226
[18] Mohacek-Grosev V, Furic K and Ivankovic H 2013 Vib. Spectrosc. 64 101
[19] Rey I, Johansson P, Lindgren J, Lassegues J C, Grondin J and Servant L 1998 J. Phys. Chem. A 102 3249
[20] Brouillette D, Irish D E, Taylor N J, Gerald Perron, Odziemkowski M and Desnoyers J E 2002 Phys. Chem. Chem. Phys. 4 6063
[21] Matsubara K, Kaneuchi R and Maekita N 1998 J. Chem. Soc. Faraday T. 94 3601
[1] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[2] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[3] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[4] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[5] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
[6] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[7] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[8] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[9] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[10] Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating
Yi Wang(王怡), Bo-Nan Liu(刘柏男), Ge Zhou(周格), Kai-Hui Nie(聂凯会), Jie-Nan Zhang(张杰男), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068202.
[11] Structure, conductivity, and ion emission properties of RbAg4I5 solid electrolyte film prepared by pulsed laser deposition
Jun-Lian Chen(陈军联), Wen-Bin Zuo(左文彬), Xian-Wen Ke(柯贤文), Alexander B Tolstoguzov, Can-Xin Tian(田灿鑫), Neena Devi, Ranjana Jha, Gennady N Panin, De-Jun Fu(付德君). Chin. Phys. B, 2019, 28(6): 060705.
[12] Size effect of Si particles on the electrochemical performances of Si/C composite anodes
Bonan Liu(刘柏男), Hao Lu(陆浩), Geng Chu(褚赓), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Shimou Chen(陈仕谋), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088201.
[13] Improved electrochemical performances of high voltage LiCoO2 with tungsten doping
Jie-Nan Zhang(张杰男), Qing-Hao Li(李庆浩), Quan Li(李泉), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088202.
[14] A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte
Jia-Yue Peng(彭佳悦), Jie Huang(黄杰), Wen-Jun Li(李文俊), Yi Wang(王怡), Xiqian Yu(禹习谦), Yongsheng Hu(胡勇胜), Liquan Chen(陈立泉), Hong Li(李泓). Chin. Phys. B, 2018, 27(7): 078201.
[15] Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries
Yu-Xin Tong(仝毓昕), Qing-Hua Zhang(张庆华), Lin Gu(谷林). Chin. Phys. B, 2018, 27(6): 066107.
No Suggested Reading articles found!