Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014501    DOI: 10.1088/1674-1056/25/1/014501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives

Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼)
Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. Firstly, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.
Keywords:  conformable fractional derivative      Hamilton's canonical equation      non-Noether conserved quantity  
Received:  26 June 2015      Revised:  28 August 2015      Accepted manuscript online: 
PACS:  45.10.Hj (Perturbation and fractional calculus methods)  
  02.30.Xx (Calculus of variations)  
  11.10.Ef (Lagrangian and Hamiltonian approach)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272287 and 11472247), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13097), and the Key Science and Technology Innovation Team Project of Zhejiang Province, China (Grant No. 2013TD18).
Corresponding Authors:  Jing-Li Fu     E-mail:  sqfujingli@163.com

Cite this article: 

Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼) Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives 2016 Chin. Phys. B 25 014501

[1] Noether A E 1918 Math. Phys. KI II 235
[2] Li Z P 1981 Acta Phys. Sin. 30 1659 (in Chinese)
[3] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[4] Mei F X 2001 Chin. Phys. 10 177
[5] Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291
[6] Gonzaler-Cascon F 1994 J. Phys. A: Math. Gen. 27 L59
[7] Lutzky M 1995 J. Phys. A: Math. Gen. 28 L637
[8] Mei F X 2002 Chin. Sci. Bull. 47 1544 (in Chinese)
[9] Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese)
[10] Fu J L, Chen L Q and Xie F P 2004 Chin. Phys. Soc. 13 1611
[11] Fang J H, Liao Y P and Peng Y 2004 Chin. Phys. Soc. 13 1620
[12] Zhou S, Fu H and Fu J L 2011 Sci. Chin. Phys. Mech. Astron. 54 1847
[13] Zhang S H, Chen B Y and Fu J L 2012 Chin. Phys. B 21 100202
[14] Zhou Y and Zhang Y 2014 Chin. Phys. B 23 124502
[15] Sun Y, Chen B Y and Fu J L 2014 Chin. Phys. B 23 110201
[16] Zaslavsky G M 2005 Hamiltonian Chaos and Fractional Dynamics (Oxford: Oxford University Press)
[17] Tarasov V E 2010 Fractional Dynamics (Beijing: Higher Education Press)
[18] Oldham K B and Spanier J 1974 The Fractional Calculus (New York: Academic Press)
[19] Podlubny I 1999 Fractional Differential Equations (San Diego CA: Academic Press)
[20] Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: A Wiley-Interscience Publication)
[21] Hilf R 2000 Applications of Fractional Calculus in Physics (Singapore: World Scientific Publishing Company)
[22] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives-Theory and Applications (Linghorne: Gordon and Breach Science Publishers)
[23] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier B V)
[24] Zaslavsky G M 2002 Phys. Rep. 371 461
[25] Zaslavsky G M and Edelman M A 2004 Physica D 193 128
[26] Yang J H 2012 Chin. Phys. Lett. 29 104501
[27] Tan C, Liang Z S and Zhang J Q 2014 Acta Phys. Sin. 63 200502 (in Chinese)
[28] Wang F, Xie T T, Deng C and Luo M K 2014 Acta Phys. Sin. 63 160502 (in Chinese)
[29] Zhou X W, Lin L F, Ma H and Luo M K 2014 Acta Phys. Sin. 63 160503 (in Chinese)
[30] Tu Z, Lai L and Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese)
[31] Wang F Q and Ma X K 2013 Chin. Phys. B 22 030506
[32] Riewe F 1996 Phys. Rev. E 53 1890
[33] Riewe F 1997 Phys. Rev. E 55 3581
[34] Agrawal O P 2002 J. Math. Anal. Appl. 272 368
[35] Agrawal O P 2004 Nonlinear Dyn. 38 323
[36] Zhang Y 2012 Chin. Phys. B 21 084502
[37] Wang L L and Fu J L 2014 Chin. Phys. B 23 124501
[38] Khalil R, Al Horani M, Yousef A and Sababheh M 2014 J. Comput. Appl. Math. 264 65
[39] Abdeljawad T 2015 J. Comput. Appl. Math. 279 57
[1] Noether symmetry and non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations
Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2007, 16(11): 3182-3186.
[2] New non-Noether conserved quantities of mechanical system in phase space
Yan Xiang-Hong (闫向宏), Fang Jian-Hui (方建会). Chin. Phys. B, 2006, 15(10): 2197-2201.
[3] A new type of Lie symmetrical non-Noether conserved quantity for nonholonomic systems
Luo Shao-Kai (罗绍凯), Huang Fei-Jiang (黄飞江), Lu Yi-Bing (卢一兵). Chin. Phys. B, 2004, 13(12): 2182-2186.
[4] Non-Noether conserved quantity constructed by using form invariance for Birkhoffian system
Xu Xue-Jun (许学军), Mei Feng-Xiang (梅凤翔), Qin Mao-Chang (秦茂昌). Chin. Phys. B, 2004, 13(12): 1999-2002.
[5] Non-Noether symmetries and conserved quantities of the Lagrange mechano-electrical systems
Fu Jing-Li (傅景礼), Chen Li-Qun (陈立群), Liu Rong-Wan (刘荣万). Chin. Phys. B, 2004, 13(11): 1784-1789.
[6] Non-Noether symmetrical conserved quantity for nonholonomic Vacco dynamical systems with variable mass
Qiao Yong-Fen (乔永芬), Li Ren-Jie (李仁杰), Zhao Shu-Hong (赵淑红). Chin. Phys. B, 2004, 13(11): 1790-1795.
[7] Lie symmetries and non-Noether conserved quantities for Hamiltonian canonical equations
Fu Jing-Li (傅景礼), Chen Li-Qun (陈立群), Xie Feng-Ping (谢凤萍). Chin. Phys. B, 2004, 13(10): 1611-1614.
[8] The Lie symmetrical non-Noether conserved quantity of holonomic Hamiltonian system
Fang Jian-Hui (方建会), Liao Yong-Pan (廖永潘), Peng Yong (彭勇). Chin. Phys. B, 2004, 13(10): 1620-1622.
[9] A set of Lie symmetrical non-Noether conserved quantity for the relativistic Hamiltonian systems
Cai Jian-Le (罗绍凯), Jia Li-Qun (贾利群), Luo Shao-Kai (蔡建乐). Chin. Phys. B, 2003, 12(8): 841-845.
[10] A set of the Lie symmetrical conservation laws for the rotational relativistic Birkhoffian system
Luo Shao-Kai (罗绍凯), Cai Jian-Le (蔡建乐). Chin. Phys. B, 2003, 12(4): 357-360.
No Suggested Reading articles found!