Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127101    DOI: 10.1088/1674-1056/24/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles calculation of the electronic structure, chemical bonding, and thermodynamic properties of β-US2

Li Shi-Chang (李世长)a, Zheng Yuan-Lei (郑远蕾)a, Ma Sheng-Gui (马生贵)a, Gao Tao (高涛)a, Ao Bing-Yun (敖冰云)b
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
b Science and Technology on Surface Physics and Chemistry Laboratory, P. O. Box 9071-35, Jiangyou 621907, China
Abstract  The electronic structure, magnetic states, chemical bonding, and thermodynamic properties of β-US2 are investigated by using first-principles calculation through the density functional theory (DFT)+U approach. The obtained band structure exhibits a direct band gap semiconductor at Γ point with a band gap of 0.9 eV for β-US2, which is in good agreement with the recent experimental data. The charge-density differences, the Bader charge analysis, and the Born effective charges suggest that the U-S bonds of the β-US2 have a mixture of covalent and ionic characters, but the ionic character is stronger than covalent character. The Raman-active, infrared-active, and silent modes at the Γ point are further assigned and discussed. The obtained optical-mode frequencies indicate that the three apparent LO-TO (longitudinal optical-transverse optical) splittings occur in B1u, B2u, and B3u modes, respectively. Furthermore, the Helmholtz free energy ΔF, the specific heat ΔE, vibrational entropy SM, and constant volume CV are studied over a range from 0 K~100 K. We expect that our work can provide some valuable information for further experimental investigation of the dielectric properties and the infrared reflectivity spectrum of uranium chalcogenide.
Keywords:  β-US2      magnetization      chemical bonding      thermodynamic properties  
Received:  07 July 2015      Revised:  05 August 2015      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  31.15.ae (Electronic structure and bonding characteristics)  
  74.25.Bt (Thermodynamic properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).
Corresponding Authors:  Gao Tao, Ao Bing-Yun     E-mail:  gaotao@scu.edu.cn;aobingyun@caep.cn

Cite this article: 

Li Shi-Chang (李世长), Zheng Yuan-Lei (郑远蕾), Ma Sheng-Gui (马生贵), Gao Tao (高涛), Ao Bing-Yun (敖冰云) First-principles calculation of the electronic structure, chemical bonding, and thermodynamic properties of β-US2 2015 Chin. Phys. B 24 127101

[1] Kohlmann H and Beck H P 1997 Z. Anorg. Allg. Chem. 632 785
[2] Suski W, Gibiński T, Wojakowski A and Czopnik A 1972 Phys. Stat. Solidi 9 653
[3] Tateiwa N, Haga Y, Sakai H, Ikeda S, Matsuda T D, Yamamoto E and Onuki Y 2011 J. Phys. Soc. Jpn. 80 SA103
[4] Metoki N and Ikeda S 2013 J. Korean Phys. Soc. 62 1782
[5] Metoki N, Sakai H, Suzuki M, Yamamoto E, Haga Y, Matsuda T D and Ikeda S 2014 J. Phys. Soc. Jpn. 3 013011
[6] Ikedaa S, Sakaia H, Matsudaa T D, Tateiwaa N, Nakamuraa A, Yamamotoa E, Aokib D, Hommab Y, Shiokawab Y, Hedoc M, Uwatokoc Y, Hagac Y and Ounki Y 2008 Physica B 403 893
[7] Yamamoto E, Tateiwa N, Haga Y, Ikeda S, Sakai H, Onuki Y and Fisk Z 2014 J. Phys. Soc. Jpn. 3 011095
[8] Yu Y, Zhou J J, Han H L, Zhang C Y Cai T, Song C Q and Gao T 2009 J. Alloys Compd. 471 492
[9] Baroni S, Gironcoli S D, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[10] Zhang Y, Wang B T, Lu Y, Yang Y and Zhang P 2012 J. Nucl. Mater. 430 137
[11] Wang B T, Zhang P, Lizarraga R, Marco I D and Eriksson O 2013 Phys. Rev. B 88 104107
[12] Lu Y, Wang B T, Li R W, Shi H L and Zhang P 2010 J. Nucl. Mater. 406 218
[13] Shi H L, Zhang P, Li S S, Sun B and Wang B T 2009 Phys. Lett. A 373 3577
[14] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[15] Bloechl P E 1994 Phys. Rev. B 50 17953
[16] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[17] Wang B T, Shi H, Li W and Zhang P 2010 Phys. Rev. B 81 045119
[18] Wen X D, Martin R L, Scuseria G E, Rudin S P, Batista E R and Burrell A K 2013 J. Phys.: Condens. Matter 25 025501
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Bader R F W 1990 Atoms in molecules: a uantum theory (New York: Oxford University Press)
[21] Giannozzi P and de Gironcoli S 1991 Phys. Rev. B 43 7231
[22] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[23] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[24] Huang L F, Zheng X H, Zhang G R, Li L L and Zeng Z 2011 J. Phys. Chem. C 115 21088
[25] Hector L G, Herbst J F and Capehart T W 2003 J. Alloys Compd. 353 74
[26] Wang B T, Shi H L, Li W D and Zhang P 2010 Phys. Rev. B 81 045119
[27] Andersson D A, Lezama J, Uberuaga B P, Deo C and Conradson S D 2009 Phys. Rev. B 79 024110
[28] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[29] Iliev M N, Lee H G, Popov V N, Abrashev M V, Hamed A, Meng R L and Chu C W 1997 Phys. Rev. B 56 2488
[30] Siegel A, Parlinski K and Wdowik U D 2006 Phys. Rev. B 74 104116
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[3] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[4] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[5] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[6] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[7] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[8] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[9] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[10] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[11] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[12] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[13] Magnetization relaxation of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics driven by DC/AC magnetic field
Yu-Song Hu(胡玉松), Min Jiang(江敏), Tao Hong(洪涛), Zheng-Ming Tang(唐正明), and Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2021, 30(9): 090202.
[14] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[15] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
No Suggested Reading articles found!