Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 114205    DOI: 10.1088/1674-1056/24/11/114205
RAPID COMMUNICATION Prev   Next  

Kramers-Kronig relation in a Doppler-broadened Λ -type three-level system

Wang Meng (王梦)a b, Lu Xiao-Gang (芦小刚)a, Bai Jin-Hai (白金海)a, Pei Li-Ya (裴丽娅)c, Miao Xing-Xu (缪兴绪)a, Gao Yan-Lei (高艳磊)a b, Wu Ling-An (吴令安)a, Fu Pan-Ming (傅盘铭)a, Yang Shi-Ping (杨世平)b, Pang Zhao-Guang (庞兆广)b, Wang Ru-Quan (王如泉)a, Zuo Zhan-Chun (左战春)a
a Laboratory of Optical Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Hebei Normal University, Shijiazhuang 050024, China;
c College of Material Sciences and Optoelectronic Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  We measure the absorption and dispersion in a Doppler-broadened Λ -type three level system by resonant stimulated Raman spectroscopy with homodyne detection. Through studying the dressed state energies of the system, it is found that the absorption and dispersion satisfy the Kramers-Kronig relation. The absorption and dispersion spectra calculated by employing this relation agree well with our experimental observations.
Keywords:  electromagnetically induced transparency      stimulated Raman spectroscopy      Kramers-Kronig relation  
Received:  11 May 2015      Revised:  17 June 2015      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB922002 and 2010CB922904), the National Natural Science Foundation of China (Grant Nos. 11274376 and 61308011), and the Natural Science Foundation of Hebei Province, China (Grant No. A2015205161).
Corresponding Authors:  Wang Ru-Quan     E-mail:  ruquanwang@aphy.iphy.ac.cn

Cite this article: 

Wang Meng (王梦), Lu Xiao-Gang (芦小刚), Bai Jin-Hai (白金海), Pei Li-Ya (裴丽娅), Miao Xing-Xu (缪兴绪), Gao Yan-Lei (高艳磊), Wu Ling-An (吴令安), Fu Pan-Ming (傅盘铭), Yang Shi-Ping (杨世平), Pang Zhao-Guang (庞兆广), Wang Ru-Quan (王如泉), Zuo Zhan-Chun (左战春) Kramers-Kronig relation in a Doppler-broadened Λ -type three-level system 2015 Chin. Phys. B 24 114205

[1] Arimondo E;1996 Prog. Opt. 35 257
[2] Harris S E;1989 Phys. Rev. Lett. 62 1033
[3] Marte P, Zoller P and Hall J L;1991 Phys. Rev. A 44 R4118
[4] Harris S E, Field J E and Imamoglu A;1990 Phys. Rev. Lett. 64 1107
[5] Harris S E;1997 Phys. Today 50 36
[6] Fleischhauer M, Imamoglu A and Marangos J P;2005 Rev. Mod. Phys. 77 633
[7] Imamoglu A and Harris S E;1989 Opt. Lett. 14 1344
[8] Xiao M, Li Y, Jin S and Gea- Banacloche J;1995 Phys. Rev. Lett. 74 666
[9] Muller M, Homann F, Rinkleff R H and Wicht A;2001 Phys. Rev. A 64 013803
[10] Kang H and Zhu Y;2003 Phys. Rev. Lett. 91 093601
[11] Pei L, Lu X, Bai J, MiaoX, Wang R, Wu L A, Ren S, Jiao Z, Zhu H, Fu P and Zuo Z;2013 Phys. Rev. A 87 063822
[12] Pei L, Wang R, Zuo Z, Wu L A and Fu P;2013 Acta Phys. Sin. 62 124208 (in Chinese)
[13] Fleischhauer M and Lukin M D;2000 Phys. Rev. Lett. 84 5094
[14] Kronig R de L;1926 J. Opt. Soc. Am. 12 547
[15] Kramers H A 1927 Atti Cong. Intern. Fisici 2 545
[16] Scandolo S and Bassani F;1992 Phys. Rev. B 45 13257
[17] Peiponen K E, Lucarini V, Saarinen J J and Vartiainen E;2004 Appl. Spectrosc. 58 499
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[12] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[13] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[14] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[15] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
No Suggested Reading articles found!