Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104214    DOI: 10.1088/1674-1056/24/10/104214
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

V-L decomposition of a novel full-waveform lidar system based on virtual instrument technique

Xu Fan (徐帆), Wang Yuan-Qing (王元庆)
School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China
Abstract  A novel three-dimensional (3D) imaging lidar system which is based on a virtual instrument technique is introduced in this paper. The main characteristics of the system include: the capability of modeling a 3D object in accordance with the actual one by connecting to a geographic information system (GIS), and building the scene for the lidar experiment including the simulation environment. The simulation environment consists of four parts: laser pulse, atmospheric transport, target interaction, and receiving unit. Besides, the system provides an interface for the on-site experiment. In order to process the full waveform, we adopt the combination of pulse accumulation and wavelet denoising for signal enhancement. We also propose an optimized algorithm for data decomposition: the V-L decomposition method, which combines Vondrak smoothing and laser-template based fitting. Compared with conventional Gaussian decomposition, the new method brings an improvement in both precision and resolution of data decomposition. After applying V-L decomposition to the lidar system, we present the 3D reconstructed model to demonstrate the decomposition method.
Keywords:  lidar system      virtual instrument      Vondrak smoothing      laser-template based fitting  
Received:  12 March 2015      Revised:  14 April 2015      Accepted manuscript online: 
PACS:  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 608320036).
Corresponding Authors:  Xu Fan, Wang Yuan-Qing     E-mail:  alextsui918@gmail.com;yqwang@nju.edu.cn

Cite this article: 

Xu Fan (徐帆), Wang Yuan-Qing (王元庆) V-L decomposition of a novel full-waveform lidar system based on virtual instrument technique 2015 Chin. Phys. B 24 104214

[1] Zhao P T, Zhang Y C, Wang L, Hu S X, Su J, Cao K F, Zhao Y F and Hu H L 2008 Chin. Phys. B 17 335
[2] Tang L, Wang C R, Wu H B and Dong J H 2012 Chin. Phys. Lett. 29 014213
[3] Yin W Y, He W J, Gu G H and Chen Q 2014 Acta Phys. Sin. 63 164205 (in Chinese)
[4] Mallet C and Bretar F 2009 ISPRS J. Photogramm. Remote Sens. 64 1
[5] O'Brien M E and Fouche D G 2005 MIT Lincoln Lab. J. 15 37
[6] Berginc G and Jouffroy M 2009 Proceedings of the 2009 IEEE International Geoscience & Remote Sensing Symposium, July 12-17, 2009, Cape Town, South Africa, p. 440
[7] Graham M 2009 DSTO general document DSTO-GD-0577
[8] Kim A M, Olsen R C and Borges C F 2010 Proc. SPIE, April 5, 2010, Orlando, Florida, p. 768411
[9] Jutzi B and Stilla U 2006 Proceedings of Phtogrammetric Computer Vision PCV, 2006, Istanbul, Turkey, p. 234
[10] Jutzi B and Stilla U 2007 Urban Remote Sensing Joint Event, April 11-13, 2007, Paris, France, p. 1
[11] Sansoni G and Docchio F 2004 Robotics and Computer-Integrated Manufacturing 20 359
[12] Puente I, González-Jorge H, Riveiro B and Arias P 2012 Opt. Laser. Technol 45 578
[13] Hladik C and Alber M 2012 Rem. Sens. Env. 121 224
[14] Fernandez J C, Singhania A, Caceres J, Slatton K C, Starek M and Kumar R 2007 GEM Center Report No. Rep_2007-12-001, University of Florida
[15] Carlsson T, Steinvall O and Letalick D 2001 Scientific Report FOI-R-0163, Sweden
[16] Der S, Redman B and Chellappa R 1997 Appl. Opt. 36 6869
[17] Fang H T and Huang D S 2004 Opt. Commun. 38 67
[18] Zhou Z R, Hua D X, Wang Y F, Yan Q, Li S C, Li Y and Wang H W 2013 Opt. Lasers Eng. 51 961
[19] Blanco D, Mulgrew B and McLaughlin S 2004 Proceedings of ICASSP, May 17-21, 2004, p. 821
[20] Vondrák J 1977 Bulletin of the Astronomical Institute of Czechoslovakia 28 84
[21] Hofton M A, Minster J B and Blair J B 2000 IEEE Trans. Geosci. Remote Sens. 38 1989
[22] Axelsson P 2000 Int. Arch. Photogramm. Remote Sens. 4 111
[23] Knowlton R 2011 MIT Lincoln Lab. Tech. Notes, www.ll.mit. edu/putlications/TechNote_ALIRT.pdf
[24] Reitberger J, Schnörr C, Krzystek P and Stilla U 2009 ISPRS J. Photogramm. Remote Sens. 64 561
[1] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[2] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[3] A scanning distortion correction method based on X- Y galvanometer Lidar system
Bao-Ling Qi(漆保凌), Chun-Hui Wang(王春晖), Dong-Bing Guo(郭东兵), and Bin Zhang(张斌). Chin. Phys. B, 2021, 30(4): 044206.
[4] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[5] Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm
Guo-Dong Sun(孙国栋), Lai-An Qin(秦来安), Zai-Hong Hou(侯再红), Xu Jing(靖旭), Feng He(何枫), Feng-Fu Tan(谭逢富), Si-Long Zhang(张巳龙), Shou-Chuan Zhang(张守川). Chin. Phys. B, 2019, 28(2): 024213.
[6] Detection performance improvement of photon counting chirped amplitude modulation lidar with response probability correction
Yi-Fei Sun(孙怿飞), Zi-Jing Zhang(张子静), Li-Yuan Zhao(赵丽媛), Wei-Min Sun(孙伟民), Yuan Zhao(赵远). Chin. Phys. B, 2018, 27(9): 094213.
[7] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[8] Photon-counting chirped amplitude modulation lidar system using superconducting nanowire single-photon detector at 1550-nm wavelength
Hui Zhou(周慧), Yu-Hao He(何宇昊), Chao-Lin Lü(吕超林), Li-Xing You(尤立星), Zhao-Hui Li(李召辉), Guang Wu(吴光), Wei-Jun Zhang(张伟君), Lu Zhang(张露), Xiao-Yu Liu(刘晓宇), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2018, 27(1): 018501.
[9] The intensity detection of single-photon detectors based on photon counting probability density statistics
Zijing Zhang(张子静), Long Wu(吴龙), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2017, 26(10): 104207.
[10] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[11] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[12] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[13] Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach
Jie Hao(郝杰), Ma-li Gong(巩马理), Peng-fei Du(杜鹏飞), Bao-jie Lu(卢宝杰), Fan Zhang(张帆), Hai-tao Zhang(张海涛), Xing Fu(付星). Chin. Phys. B, 2016, 25(7): 074207.
[14] Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination
Shangguan Ming-Jia (上官明佳), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Wang Chong (王冲), Qiu Jia-Wei (裘家伟), Zhang Yun-Peng (张云鹏), Shu Zhi-Feng (舒志峰), Xue Xiang-Hui (薛向辉). Chin. Phys. B, 2015, 24(9): 094212.
[15] Estimation of random errors for lidar based on noise scale factor
Wang Huan-Xue (王欢雪), Liu Jian-Guo (刘建国), Zhang Tian-Shu (张天舒). Chin. Phys. B, 2015, 24(8): 084213.
No Suggested Reading articles found!