Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 098801    DOI: 10.1088/1674-1056/24/9/098801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery

Zheng Hong (郑宏), Liu Xu (刘煦), Wei Min (魏旻)
University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  

In order to improve the accuracy of the battery state of charge (SOC) estimation, in this paper we take a lithium-ion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate. Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded.

Keywords:  state of charge (SOC) estimation      temperature      charge rate      adaptive Kalman filter  
Received:  31 July 2014      Revised:  30 March 2015      Accepted manuscript online: 
PACS:  88.85.Hj (Electric vehicles (EVs))  
  82.47.Aa (Lithium-ion batteries)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  07.05.Tp (Computer modeling and simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61004048 and 61201010).

Corresponding Authors:  Zheng Hong     E-mail:  macrozheng@uestc.edu.cn

Cite this article: 

Zheng Hong (郑宏), Liu Xu (刘煦), Wei Min (魏旻) Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery 2015 Chin. Phys. B 24 098801

[1] Soundarrajan C, Sivasankar A and Maruthamuthu S 2012 Journal of Hazardous Materials 217 452
[2] Ajayi F F and Weigele P R 2012 Bioresource Technology 116 86
[3] Wang Z P, Liu P and Wang L F 2013 Chin. Phys. B 22 088801
[4] Hou X H, Hu S J and Huang Z W 2008 Chin. Phys. B 17 3422
[5] Huang Z W, Hu S J and Zhang Z W 2010 Chin. Phys. B 19 117101
[6] Shi S L, Liu Y G and Wang T H 2009 Chin. Phys. B 18 4564
[7] Bhangu B S, Bentley P, Stone D A and Bingham C M 2005 Vehicle Power and Propulsion Conference, September 7-9, 2005, Chicago, USA, p. 780
[8] Zhao Q, Xue J, Abir D S, Tuhina A M, Mrinalini D D, Mohamed B, Börje J and Rajeev A 2014 Solid State Ionics 258 88
[9] Qiao L X, Wang J and Zheng B X 2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, November 15-17, Beijing, China, p. 313
[10] Zhang Y, Cheng X M, Fang Y Q and Yin Y L 2013 Proceedings of the 32th Chinese Control Conference, July 26-28, Xi'an, China, p. 7668
[11] Liu H 2010 Study on SOC Estimation Method of Lithium-ion Battery Based on EKF for Electric Vehicles (Beijing: Beijing Jiaotong University)
[12] Lu J X 2012 Research on the Performance Model and Prediction of State-of-charge for Li-ion Battery (Guangzhou: South China University of Technology)
[13] Qiang J X, Guo Q and Yang L 2008 Chin. J. Mech. Eng. 21 20
[14] Han J, Kim D and Sunwoo M 2009 J. Power Sources 188 606
[15] Saeed S, Reza G, Bor Y and Liaw 2013 IEEE 2013 Transportation Electrification Conference and Expo, June 16-19, 2013, Detroit, USA
[16] He H W, R X, Zhang X W, Sun F C and Fan J X 2011 IEEE Transactions on VehicularTechnology 60 1461
[17] Sage A P and Husa G W 1969 IEEE Symposium on, Vol. 8, p. 61
[18] Zhao Q, Heinz W, Christian and Bohn 2012 Proceedings of the 31th Chinese Control Conference, June 25-27, Hefei, China, p. 1978
[19] Hu X S, Sun F C and Cheng X M 2010 Journal of Beijing Institute of Technology 119 416
[20] Aissa B and Abdelhamid M 2012 Lecture Notes in Information Technology-Proceedings of 2012 International Conference on Future Electrical Power and Energy Systems, February 21-22, 2012, Sanya, China, p. 483
[21] Bi J, Shao S, Guan W and Wang L 2012 Chin. Phys. B 21 118801
[22] Taesic K 2011 IEEE Transanctions on Energy Conversion 26 1172
[23] Jiang C N, Li H and He X C 2013 Sci. Technol. Eng. 13 2496
[24] Gui C Q 2011 Battery Bimonthly 41 88
[25] Wang J P, Guo J G and Ding L 2009 Energy Conversion and Management 50 3182
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[4] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[5] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[8] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[9] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[10] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[11] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[12] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[13] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[14] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[15] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
No Suggested Reading articles found!