Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047203    DOI: 10.1088/1674-1056/24/4/047203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement of mobility edge model by using new density of states with exponential tail for organic diode

Muhammad Ammar Khan, Sun Jiu-Xun
School of Physical Electronics, University of Electronic Science and Technology, Chengdu 610054, China
Abstract  The mobility edge (ME) model with single Gaussian density of states (DOS) is simplified based on the recent experimental results about the Einstein relationship. The free holes are treated as being non-degenerate, and the trapped holes are dealt with as being degenerate. This enables the integral for the trapped holes to be easily realized in a program. The J-V curves are obtained through solving drift-diffusion equations. When this model is applied to four organic diodes, an obvious deviation between theoretical curves and experimental data is observed. In order to solve this problem, a new DOS with exponential tail is proposed. The results show that the consistence between J-V curves and experimental data based on a new DOS is far better than that based on the Gaussian DOS. The variation of extracted mobility with temperature can be well described by the Arrhenius relationship.
Keywords:  organic diode      potential barriers      Einstein relationship  
Received:  26 August 2014      Revised:  04 November 2014      Published:  05 April 2015
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  73.40.-c (Electronic transport in interface structures)  
  73.40.Cg (Contact resistance, contact potential)  
  73.61.Ph (Polymers; organic compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31470822).
Corresponding Authors:  Sun Jiu-Xun     E-mail:  sjx@uestc.edu.cn

Cite this article: 

Muhammad Ammar Khan, Sun Jiu-Xun Improvement of mobility edge model by using new density of states with exponential tail for organic diode 2015 Chin. Phys. B 24 047203

[1] Fishchuk I I 2001 Philos. Mag. B 81 561
[2] Kadashchuk A, Skryshevskii Y, Vakhnin A, Ostapenko N, Arkhipov V I, Emelianova E V and Bassler H 2001 Phys. Rev. B 63 115205
[3] Grunewald M and Thomas P 1979 Phys. Status Solidi B 94 125
[4] Fishchuk I I, Hertel D, Bassler H and Kadashchuk A K 2002 Phys. Rev. B 65 125201
[5] Bassler H 1993 Phys. Status Solidi B 175 15
[6] Bassler H 1981 Phys. Status Solidi B 107 9
[7] Hartenstein B and Bassler H 1995 J. Non-Cryst. Solids 190 112
[8] Arkhipov V I, Emelianova E V and Adriaenssens G J 2001 Phys. Rev. 64 125125
[9] Vissenberg M C J M and Matters M 1998 Phys. Rev. B 57 12964
[10] Mott N F 1970 Philos. Mag. 22 7
[11] Mott N F and Twose W D 1961 Adv. Phys. 10 107
[12] Kalb W L, Mattenberger K and Batlogg B 2008 Phys. Rev. B 78 035334
[13] Krellner C, Haas S, Goldmann C, Pernstich K P, Gundlach D J and Batlogg B 2007 Phys. Rev. B 75 245115
[14] Kalb W L, Haas S, Krellner C, Mathis T and Batlogg B 2010 Phys. Rev. B 81 155315
[15] Dacuna J, Xie W and Salleo A 2012 Phys. Rev. B 86 115202
[16] Dacuna J and Salleo A 2011 Phys. Rev. B 84 195209
[17] Mehraeen S, Coropceanu V and Brédas J L 2013 Phys. Rev. B 87 195209
[18] Puigdollers J, Marsal A, Cheylan S, Voz C and Alcubilla R 2010 Org. Electr. 11 1333
[19] Kalb W L and Batlogg B 2010 Phys. Rev. B 81 035327
[20] Oelerich J O, Huemmer D and Baranovskii S D 2012 Phys. Rev. Lett. 108 226403
[21] Yogev S, Halpern E, Matsubara R, Nakamura M and Rosenwaks Y 2011 Phys. Rev. B 84 165124
[22] Cho J M, Akiyama Y, Kakinuma T and Mori T 2013 AIP Adv. 3 102131
[23] Welborn M, Chen J H and Van Voorhis T 2013 Phys. Rev. B 88 205113
[24] Roichman Y and Tessler N 2002 Appl. Phys. Lett. 80 1948
[25] Peng Y Q, Yang J H and Lu F P 2006 Appl. Phys. A 83 305
[26] Peng Y Q, Yang J H, Lu F P, et al. 2007 Appl. Phys. A 86 225
[27] Das A and Khan A 2008 Appl. Phys. A 93 527
[28] Lu X H, Sun J X, Guo Y and Zhang Da 2009 Chin. Phys. Lett. 26 087202
[29] Neumann F, Genenko Y A and von Seggern H 2006 J. Appl. Phys. 99 013704
[30] Wetzelaer G A H, Koster L J A and Blom P W M 2011 Phys. Rev. Lett. 107 066605
[31] Nicolai H T, Mandoc M M and Blom P W M 2011 Phys. Rev. B 83 195204
[32] Nicolai H T, Kuik M, Wetzelaer G A H, de Boer B, Campbell C, Risko C, Brédas J L and Blom P W M 2012 Nat. Mater. Lond. 11 882
[33] Gummel H K 1964 IEEE Trans. Electron Dev. 11 455
[34] Scharfetter D L and Gummel H K 1969 IEEE Trans. Electron Dev. 16 64
[35] Paasch G and Scheinert S 2010 J. Appl. Phys. 107 104501
[36] Neumann F, Genenko Y A and von Seggern H 2006 J. Appl. Phys. 99 013704
[37] de Bruyn P, van Rest A H P, Wetzelaer G A H, de Leeuw D M and Blom P W M 2013 Phys. Rev. Lett. 111 186801
[38] Pasveer W F, Cottaar J, Tanase C, Coehoorn R, Bobbert P A, Blom P W M, de Leeuw D M and Michels M A J 2005 Phys. Rev. Lett. 94 206601
[39] Tanase C, Meijer E J, Blom P W M and de Leeuw D M 2003 Phys. Rev. Lett. 91 216601
[40] Craciun N I, Wildeman J and Blom P W M 2008 Phys. Rev. Lett. 100 056601
[1] Stackable luminescent device integrating blue light emitting diode with red organic light emitting diode
Kang Su(苏康), Jing Li(李璟), Chang Ge(葛畅), Xing-Dong Lu(陆兴东), Zhi-Cong Li(李志聪), Guo-Hong Wang(王国宏), Jin-Min Li(李晋闽). Chin. Phys. B, 2020, 29(4): 048504.
[2] Compact 2×2 parabolic multimode interference thermo-optic switches based on fluorinated photopolymer
Ji-Hou Wang(王继厚), Chang-Ming Chen(陈长鸣), Ke-Wei Hu(胡珂玮), Ru Cheng(程儒), Chun-Xue Wang(王春雪), Yun-Ji Yi(衣云骥), Xiao-Qiang Sun(孙小强), Fei Wang(王菲), Zhi-Yong Li(李智勇), Da-Ming Zhang(张大明). Chin. Phys. B, 2019, 28(4): 044207.
[3] How to characterize capacitance of organic optoelectronic devices accurately
Hao-Miao Yu(于浩淼), Yun He(何鋆). Chin. Phys. B, 2018, 27(6): 067202.
[4] A synthetic semi-empirical physical model of secondary electron yield of metals under E-beam irradiation
Guo-Bao Feng(封国宝), Wan-Zhao Cui(崔万照), Na Zhang(张娜), Meng Cao(曹猛), Chun-Liang Liu(刘纯亮). Chin. Phys. B, 2017, 26(9): 097901.
[5] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[6] Tunable wavelength filters using polymer long-period waveguide gratings based on metal-cladding directly defined technique
Ji-Hou Wang(王继厚), Chang-Ming Chen(陈长鸣), Yang Zheng(郑洋), Xi-Bin Wang(王希斌), Yun-Ji Yi(衣云骥), Xiao-Qiang Sun(孙小强), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2017, 26(2): 024212.
[7] Surface treatment on polyethylenimine interlayer to improve inverted OLED performance
Chang-Ting Wei(魏昌庭), Jin-Yong Zhuang(庄锦勇), Ya-Li Chen(陈雅丽), Dong-Yu Zhang(张东煜), Wen-Ming Su(苏文明), Zheng Cui(崔铮). Chin. Phys. B, 2016, 25(10): 108505.
[8] Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Hamed Fatehy. Chin. Phys. B, 2016, 25(4): 047201.
[9] Photoactive area modification in bulk heterojunctionorganic solar cells using optimization of electrochemicallysynthesized ZnO nanorods
Mehdi Ahmadi, Sajjad Rashidi Dafeh. Chin. Phys. B, 2015, 24(11): 117203.
[10] Characteristics of charge and discharge of PMMA samples due to electron irradiation
Feng Guo-Bao, Wang Fang, Hu Tian-Cun, Cao Meng. Chin. Phys. B, 2015, 24(11): 117901.
[11] Effect of CuPc and MoO3 co-evaporated layer on the conductivity of organic light emitting diodes
He Ze-Shang, Yu Hao-Miao, Peng Huan, Hou Xiao-Yuan. Chin. Phys. B, 2015, 24(9): 097201.
[12] Electronic mobility in the high-carrier-density limit ofion gel gated IDTBT thin film transistors
Bao Bei, Shao Xian-Yi, Tan Lu, Wang Wen-He, Wu Yue-Shen, Wen Li-Bin, Zhao Jia-Qing, Tang Wei, Zhang Wei-Min, Guo Xiao-Jun, Wang Shun, Liu Ying. Chin. Phys. B, 2015, 24(9): 098103.
[13] High color rendering index white organic light-emitting diode using levofloxacin as blue emitter
Miao Yan-Qin, Gao Zhi-Xiang, Zhang Ai-Qin, Li Yuan-Hao, Wang Hua, Jia Hu-Sheng, Liu Xu-Guang, Tsuboi Taiju. Chin. Phys. B, 2015, 24(5): 057802.
[14] Effect of traps’adjacency on the electric field dependence of mobility in organic systems
He Yun, Chen Xiao-Qing, Hou Xiao-Yuan. Chin. Phys. B, 2014, 23(9): 097201.
[15] A novel solution-based self-assembly approach to preparing ultralong titanyl phthalocyanine sub-micron wires
Zhu Zong-Peng, Wei Bin, Zhang Jian-Hua, Wang Jun. Chin. Phys. B, 2014, 23(7): 077202.
No Suggested Reading articles found!