Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047201    DOI: 10.1088/1674-1056/24/4/047201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions

Li Yia, Liu Jiana b, Wang Chun-Leia b, Su Wen-Bina b, Zhu Yuan-Hua, Li Ji-Chaoa b, Mei Liang-Moa b
a School of Physics, Shandong University, Jinan 250100, China;
b State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  The thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high-temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be ~ 0.19 at 1073 K in the heaviest oxygen reduced sample.
Keywords:  Sr0.61Ba0.39Nb2O6 -δ      electrical transport mechanism      thermoelectric figure of merit      thermal conductivity  
Received:  06 August 2014      Revised:  25 September 2014      Published:  05 April 2015
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.20.Ee (Mobility edges; hopping transport)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132 and 51002087).
Corresponding Authors:  Liu Jian     E-mail:  liujjx@sdu.edu.cn

Cite this article: 

Li Yi, Liu Jian, Wang Chun-Lei, Su Wen-Bin, Zhu Yuan-Hu, Li Ji-Chao, Mei Liang-Mo Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions 2015 Chin. Phys. B 24 047201

[1] Snyder G J, Christensen M, Nishibori E, Caillat T and Iversenet B B 2004 Nat. Mater. 3 458
[2] Svechnikova T E, Shelimova L E, Konstantinov P P, Kretova M A, Avilov E S, Zemskov V S, Stiewe C, Zuber A and Muller E 2005 Inorg. Mater. 10 1043
[3] Zhang H,Luo J,Zhu H T, Liu Q L, Liang J K, Li J B and Liu G Y 2012 Chin. Phys. B 21 106101
[4] Nolas G S, Cohen J L, Slack G A and Schujman S B 1998 Appl. Phys. Lett. 73 178
[5] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[6] Tritt T M 2002 Thermoelectric Materials: Principles, Structure, Properties, and Applications, in: Encyclopedia of Materials: Science and Technology pp. 1-11
[7] Lu P X, Qu L B and Cheng Q H 2013 Chin. Phys. B 22 117101
[8] H Ohta 2007 Mater. Today 10 44
[9] Liu Y, Li H J, Zhang Q, Li Y and Liu H T 2013 Chin. Phys. B 22 057201
[10] Lee S, Wilke R H T, Trolier-McKinstry S, Zhang S J and Randall C A 2010 Appl. Phys. Lett. 96 031910
[11] Lee S, Dursun S, Duran C and Randall C A 2011 J. Mater. Res. 26 26
[12] Choy C L, Leung W P, Xi T G, Fei Y and Shao C F 1992 J. Appl. Phys. 71 70
[13] Liu J, Wang C L, Yi L, Su W B, Zhu Y H, Li J C and Mei L M 2013 J. Appl. Phys. 114 223714
[14] Mott N F and Davis E A 1971 Electronic Processes in Non-Crystalline Materials, 2nd edn. (New York: Oxford University Press)
[15] Jaime M, Salamon M B, Pettit K, Rubinstein M, Treece R E, Horwitz J S and Chrisey D B 1996 Appl. Phys. Lett. 68 1576
[16] Heikes R R and Ure R W 1961 Thermoelectricity: Science and Engineering (New York: Interscience) p. 77
[17] Chaikin PM and Beni G 1976 Phys. Rev. B 13 647
[18] Kittel C 1996 Introduction to Solid State Physics, 7th edn. (New York: John Wiley)
[19] Fischer E, Hässler W and Hegenbarth E 1982 Phys. Stat. Sol. 72 169
[20] Kittel C 1949 Phys. Rev. 75 972
[21] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
[1] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[2] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[3] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[4] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[5] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[6] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[7] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[8] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[9] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[10] Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method
Yan-Yan Zhang(张燕燕), Ran Cheng(程然), Dong Ni(倪东), Ming Tian(田明), Ji-Wu Lu(卢继武), Yi Zhao(赵毅). Chin. Phys. B, 2019, 28(7): 078105.
[11] Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance
Kang Liu(刘康), Jiwen Zhao(赵继文), Huarui Sun(孙华锐), Huaixin Guo(郭怀新), Bing Dai(代兵), Jiaqi Zhu(朱嘉琦). Chin. Phys. B, 2019, 28(6): 060701.
[12] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[13] Thermal conductivity of systems with a gap in the phonon spectrum
E Salamatov. Chin. Phys. B, 2018, 27(7): 076502.
[14] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[15] Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites
Hong Wu(吴宏), Nusrat Shaheen, Heng-Quan Yang(杨恒全), Kun-Ling Peng(彭坤岭), Xing-Chen Shen(沈星辰), Guo-Yu Wang(王国玉), Xu Lu(卢旭), Xiao-Yuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047203.
No Suggested Reading articles found!