Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 046401    DOI: 10.1088/1674-1056/24/4/046401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Radial collapse and physical mechanism of carbon nanotube with divacancy and 5-8-5 defects

Zhang Ya-Ping (张亚萍)a, Ling Cui-Cui (凌翠翠)a b, Li Gui-Xia (李桂霞)a c, Zhu Hai-Feng (朱海丰)a, Zhang Meng-Yu (张梦禹)a
a College of Science, China University of Petroleum, Qingdao 266580, China;
b State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China;
c Science and Information Science College, Qingdao Agricultural University, Qingdao 266109, China
Abstract  

By employing molecular mechanics and molecular dynamics simulations, we investigate the radial collapses and elasticities of different chiral single-walled carbon nanotubes (SWCNTs) with divacancy, and 5-8-5 defects. It is found that divacancy and 5-8-5 defect can reduce the collapse pressure (Pc) of SWCNT (10, 10) while 5-8-5 defect can greatly increase Pc of SWCNT (17, 0). For example, 5-8-5 defect can make Pc of SWCNT (17, 0) increase by 500%. A model is established to understand the effects of chirality, divacancy, and 5-8-5 defect on radial collapse of SWCNTs. The results are particularly of value for understanding the mechanical behavior of SWCNT with divacancy, and the 5-8-5 defect that may be considered as a filler of high loading composites.

Keywords:  carbon nanotube      radial collapse      molecular dynamics      defect  
Received:  05 August 2014      Revised:  25 November 2014      Accepted manuscript online: 
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11374372), Natural Science Foundation of Shandong Province, China (Grant No. ZR2014EMQ006), the Postdoctoral Science Foundation of China (Grant No. 2014M551983), the Postdoctoral Applied Research Foundation of Qingdao City, China (Grant No. 2014), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 12CX04087A and 14CX02018A), and the Qingdao Science and Technology Program, China (Grant No. 14-2-4-27-jch).

Corresponding Authors:  Ling Cui-Cui     E-mail:  lingcuicui@upc.edu.cn

Cite this article: 

Zhang Ya-Ping (张亚萍), Ling Cui-Cui (凌翠翠), Li Gui-Xia (李桂霞), Zhu Hai-Feng (朱海丰), Zhang Meng-Yu (张梦禹) Radial collapse and physical mechanism of carbon nanotube with divacancy and 5-8-5 defects 2015 Chin. Phys. B 24 046401

[1] Poncharal P, Wang Z L, Ugarte D and De Heer W A 1999 Science 283 1513
[2] Chaudhary K T, Ali J and Yupapin P P 2014 Chin. Phys. B 23 035203
[3] Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F and Ruoff R S 2000 Science 287 637
[4] Long Y Z, Li M M, Sui W M, Kong Q S and Zhang L 2009 Chin. Phys. B 18 1221
[5] Zhang M, Atkinson K R and Baughman R H 2004 Science 306 1358
[6] Suggs K and Wang X Q 2010 Nanoscale 2 385
[7] Laachachi A, Vivet A, Nouet G, Doudou B B, Poilane C, Chen J, Bo Bai J and Ayachi M 2008 Mater. Lett. 62 394
[8] Vivet A, Doudou B B, Poilane C, Chen J and Ayachi M J 2011 J. Mater. Sci. 46 1322
[9] Terrones M, Banhart F, Grobert N, Charlier J C, Terrones H and Ajayan P 2002 Phys. Rev. Lett. 89 075505
[10] Andrews R, Jacques D, Qian D and Dickey E C 2001 Carbon 39 1681
[11] Mawhinney D B, Naumenko V, Kuznetsova A, Yates J T Jr, Liu J and Smalley R E 2000 Chem. Phys. Lett. 324 213
[12] Chandra N, Namilae S and Shet C 2004 Phys. Rev. B 69 094101
[13] Miyamoto Y, Rubio A, Berber S, Yoon M and Tomanek D 2004 Phys. Rev. B 69 121413R
[14] Huang X, Yuan H Y, Hsia K J and Zhang S 2010 Nano Res. 3 32
[15] Mielke S L, Troya D, Zhang S, Li J L, Xiao S, Car R, Ruoff R S, Schatz G C and Belytschko T 2004 Chem. Phys. Lett. 390 413
[16] Lu Q and Bhattacharya B 2005 Nanotechnology 16 555
[17] Feng D L, Feng Y H, Chen Y, Li W and Zhang X X 2013 Chin. Phys. B 22 016501
[18] Xiao J R, Staniszewski J and Gillespie J W Jr 2009 Compos. Struct. 88 602
[19] Hu Y, Jang I and Sinnott S B 2003 Compos. Sci. Technol. 63 1663
[20] Cooper C A, Cohen S R, Barber A H and Wagner H D 2002 Appl. Phys. Lett. 81 3873
[21] Mikó C, Milas M, Seo J W, Couteau E, Barisiæ N, Gaál R and Forró L 2003 Appl. Phys. Lett. 83 4622
[22] Stahl H, Appenzeller J, Martel R, Avouris P and Lengeler B 2000 Phys. Rev. Lett. 85 5186
[23] Salonen E, Krasheninnikov A V and Nordlund K 2002 Nucl. Instrum. Methods Phys. Res. Sect. B 193 603
[24] Kis A, Csányi G, Salvetat J P, Lee T N, Couteau E, Kulik A J, Benoit W, Brugger J and Forró L 2004 Nat. Mater. 3 153
[25] Huhtala M, Krasheninnikov A V, Aittoniemi J, Nordlund K and Kaski K 2004 Phys. Rev. B 70 045404
[26] Terrones M, Terrones H, Banhart F, Charlier J C and Ajayan P M 2000 Science 288 1226
[27] Ling C C, Xue Q Z, Jing N N and Xia D 2012 Nanoscale 4 3894
[28] Yan K Y, Xue Q Z, Zheng Q B, Xia D, Chen H J and Xie J 2009 J. Phys. Chem. C 113 3120.
[29] Zheng Q B, Geng Y, Wang S J, Li Z G and Kim J K 2010 Carbon 48 4315
[30] Ling C C, Xue Q Z, Jing N N and Xia D 2012 RSC Adv. 2 7549
[31] Ling C C, Xue Q Z, Chu L Y, Jing N N and Zhou X Y 2012 RSC Adv. 2 12182
[32] Ling C C, Xue Q Z, Xia D, Shan M X and Han Z D 2014 RSC Adv. 4 1107
[33] Krasheninnikov A V, Nordlund K, Sirviö M, Salonen E and Keinonen J 2001 Phys. Rev. B 63 245405
[34] Ajayan P M, Ravikumar V and Charlier J C 1998 Phys. Rev. Lett. 81 1437
[35] Krasheninnikov A V and Nordlund K 2002 J. Vac. Sci. Technol. B 20 728
[36] Krasheninnikov A V, Nordlund K, and Keinonen J 2002 Phys. Rev. B 65 165423
[37] Yan K Y, Xue Q Z, Xia D, Chen H J, Xie J and Dong M D 2009 ACS Nano 3 2235
[38] Xie J, Xue Q Z, Chen H J, Xia D, Lv C and Ma M 2010 J. Phys. Chem. C 114 2100
[39] Sun H, Ren P and Fried J R 1998 Comput. Theor. Poly. Sci. 8 229
[40] Sun H 1998 J. Phys. Chem. B 102 7338
[41] Wang Q, Duan W H, Liew K M and He X Q 2007 Phys. Lett. A 367 135
[42] Wang Q 2009 Nano Lett. 9 245
[43] Al-Haik M, Hussaini M Y and Garmestani H 2005 J. Appl. Phys. 97 074306
[44] Fan Y, Goldsmith B R and Collins P G 2005 Nat. Mater. 4 906
[45] Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K and Kaski K 2004 Phys. Rev. B 70 245416
[46] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[9] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[10] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[13] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[14] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[15] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
No Suggested Reading articles found!