Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047205    DOI: 10.1088/1674-1056/24/4/047205

Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide

Ali Badawi
Department of Physics, Faculty of Science, Taif University, Taif, Saudi Arabia
Abstract  The photovoltaic performance of CdS quantum dots sensitized solar cells (QDSSCs) using the 0.2 wt% of reduced graphene oxide and TiO2 nanoparticles (RGO+TiO2 nanocomposite) photoanode is investigated. CdS QDs are adsorbed onto RGO+TiO2 nanocomposite films by the successive ionic layer adsorption and reaction (SILAR) technique for several cycles. The current density-voltage (J-V) characteristic curves of the assembled QDSSCs are measured at AM1.5 simulated sunlight. The optimal photovoltaic performance for CdS QDSSC was achieved for six SILAR cycles. Solar cells based on the RGO+TiO2 nanocomposite photoanode achieve a 33% increase in conversion efficiency (η) compared with those based on plain TiO2 nanoparticle (NP) photoanodes. The electron back recombination rates decrease significantly for CdS QDSSCs based on RGO+TiO2 nanocomposite photoanodes. The lifetime constant (τ) for CdS QDSSC based on the RGO+TiO2 nanocomposite photoanode is at least one order of magnitude larger than that based on the bare TiO2 NPs photoanode.
Keywords:  reduced graphene oxide      nanocomposite photoanode      back recombination rate      quantum dots sensitized solar cell  
Received:  10 September 2014      Revised:  14 November 2014      Published:  05 April 2015
PACS:  72.80.Vp (Electronic transport in graphene)  
  78.67.Wj (Optical properties of graphene)  
  78.67.Sc (Nanoaggregates; nanocomposites)  
  78.67.Hc (Quantum dots)  
Fund: Project supported by the Fund from Taif University, Saudi Arabia (Grant No. 1/435/3524).
Corresponding Authors:  Ali Badawi     E-mail:

Cite this article: 

Ali Badawi Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide 2015 Chin. Phys. B 24 047205

[1] Badawi A, Al-Hosiny N, Abdallah S, Negm S and Talaat H 2013 Sol. Energy 88 137
[2] Samadpour M, Zad A I and Molaei M 2014 Chin. Phys. B 23 047302
[3] Yang Z and Chang H T 2010 Sol. Energy Mater. Sol. Cells 94 2046
[4] Lin M C and Lee M W 2011 Elec. Comm. 13 1376
[5] Li Y, Pang A, Zheng X and Wei M 2011 Electrochim. Acta 56 4902
[6] Yum J H, Choi S H, Kim S S, Kim D Y and Sung Y E 2007 J. Korean Phys. Soc. 10 257
[7] Prabakar K, Seo H, Son M and Kim H 2009 Mater. Chem. Phys. 117 26
[8] Emin S, Singh S P, Han L, Satoh N and Islam A 2011 Sol. Energy 85 1264
[9] Tubtimtae A, Wu K L, Tung H Y, Lee M W and Wang G J 2010 Elec. Comm. 12 1158
[10] Badawi A, Al-Hosiny N, Abdallah S and Talaat H 2013 Materials Science-Poland 31 6
[11] Al-Hosiny N, Abdallah S, Badawi A, Easawi K and Talaat H 2014 Mater. Sci. Semicond. Process. 26 238
[12] Kamat P V 2007 J. Phys. Chem. C 111 2834
[13] Xie Y, Yoo S H, Chen C and Cho S O 2012 Mater. Sci. Eng. B 177 106
[14] Ma W, Zhang F and Meng S 2014 Chin. Phys. B 23 086801
[15] Fan S Q, Kim D, Kim J J, Jung D W, Kang S O and Ko J 2009 Elec. Comm. 11 1337
[16] Jiao J, Zhou Z J, Zhou W H and Wu S X 2013 Mater. Sci. Semicond. Process. 16 435
[17] Kamat P V 2008 J. Phys. Chem. C 112 18737
[18] Wang X, Zheng J, Sui X, Xie H, Liu B and Zhao X 2013 Dalton Transactions 42 14726
[19] Mora Seró I a, SixtoGiménez, Moehl T, Fabregat Santiago F, Lana Villareal T, Gómez R and Bisquert J 2008 Nanotechnology 19 424007
[20] Xiang B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M and Cai J 2008 Chin. Phys. B 17 3713
[21] Khurana G, Sahoo S, Barik S K and Katiyar R S 2013 J. Alloys Compd. 578 257
[22] Ruhle S, Shalom M and Zaban A 2010 Chem. Phys. Chem. 11 2290
[23] Salant A, Shalom M, Hod I, Faust A, Zaban A and Banin U 2010 ACS Nano 4 5962
[24] Bang J H and Kamat P V 2009 ACS Nano 3 1467
[25] Pernik D R, Tvrdy K, Radich J G and Kamat P V 2011 J. Phys. Chem. C 115 13511
[26] Badawi A, Easawi K, Al-Hosiny N and Abdallah S 2014 Mater. Sci. Appl. 5 27
[27] Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P V 2008 J. Am. Chem. Soc. 130 4007
[28] Hu Y, Wang B, Zhang J, Wang T, Liu R, Zhang J, Wang X and Wang H 2013 Nanoscale Research Letters 8 222
[29] Ding J, Wang M, Deng J, Gao W, Yang Z, Ran C and Zhang X 2014 J. Alloys Compd. 582 29
[30] Li B, Liu T, Wang Y and Wang Z 2012 J. Colloid Interf. Sci. 377 114
[31] Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R and Zhang W L 2012 Chin. Phys. B 21 118101
[32] Yan J, Uddin M J, Dickens T J and Okoli O I 2013 Sol. Energy 96 239
[33] Anwar H, George A E and Hill I G 2013 Sol. Energy 88 129
[34] Song J, Yin Z, Yang Z, Amaladass P, Wu S, Ye J, Zhao Y, Deng W Q, Zhang H and Liu X W 2011 Chemistry: A European Journal 17 10832
[35] Fang X, Li M, Guo K, Zhu Y, Hu Z, Liu X, Chen B and Zhao X 2012 Electrochimica Acta 65 174
[36] Badawi A, Al-Hosiny N, Abdallah S, Merazga A and Talaat H 2014 Mater. Sci. Semicond. Process. 26 162
[37] Luan X, Chen L, Zhang J, Qu G, Flake J C and Wang Y 2013 Electrochimica Acta 111 216
[38] Peining Z, Nair A S, Shengyuan Y, Shengjie P, Elumalai N K and Ramakrishna S 2012 J. Photochem. Photobio. A: Chemistry 231 9
[39] Yu J, Fan J and Cheng B 2011 J. Power Sources 196 7891
[40] Syrrokostas G, Giannouli M and Yianoulis P 2009 Renewable Energy 34 1759
[41] Zhang Y, Zhu J, Yu X, Wei J, Hu L and Dai S 2012 Sol. Energy 86 964
[42] Lee E S, Lee K M, Yoon S I, Ko Y G and Shin D H 2013 Curr. Appl. Phys. 13, Suppl. 2 S26-S29
[43] Abdallah S, Al-Hosiny N and Badawi A 2012 J. Nanomater. 2012 6
[44] Ma P C, Siddiqui N A, Marom G and Kim J K 2010 Composites: Part A 41 1345
[45] Pomoni K, Sofianou M V, Georgakopoulos T, Boukos N and Trapalis C 2013 J. Alloys Compd. 548 194
[46] Al-Juaid F, Merazga A, Al-Baradi A and Abdel-wahab F 2013 Solid State Electron. 87 98
[47] Kim J, Choi H, Nahm C, Moon J, Kim C, Nam S, Jung D R and Park B 2011 J. Power Sources 196 10526
[48] Kim D Y, Joshi B N, Park J J, Lee J G, Cha Y H, Seong T Y, In Noh S, Ahn H J, Al-Deyabe S S and Yoon S S 2014 Ceramics International 40 11089
[49] Yu P, Zhu K, Norman A G, Ferrere S, Frank A J and Nozik A J 2006 J. Phys. Chem. B 110 25451
[1] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[2] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[3] Free-standing, curled and partially reduced graphene oxide network as sulfur host for high-performance lithium-sulfur batteries
Hui-Liang Chen(陈辉亮), Zhuo-Jian Xiao(肖卓建), Nan Zhang(张楠), Shi-Qi Xiao(肖仕奇), Xiao-Gang Xia(夏晓刚), Wei Xi(席薇), Yan-Chun Wang(王艳春), Wei-Ya Zhou(周维亚), Si-Shen Xie(解思深). Chin. Phys. B, 2018, 27(6): 068101.
[4] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[5] Graphene resistive random memory–the promising memory device in next generation
Xue-Feng Wang(王雪峰), Hai-Ming Zhao(赵海明), Yi Yang(杨轶), Tian-Ling Ren(任天令). Chin. Phys. B, 2017, 26(3): 038501.
[6] Synthesis of graphene-supported monodisperse AuPd bimetallic nanoparticles for electrochemical oxidation of methanol
Xiao Hong-Jun, Shen Cheng-Min, Shi Xue-Zhao, Yang Su-Dong, Tian Yuan, Lin Shao-Xiong, Gao Hong-Jun. Chin. Phys. B, 2015, 24(7): 078109.
[7] Complete coverage of reduced graphene oxide on silicon dioxide substrates
Huang Jingfeng, Melanie Larisika, Chen Hu, Steve Faulkner, Myra A. Nimmo, Christoph Nowak, Alfred Tok Iing Yoong. Chin. Phys. B, 2014, 23(8): 088104.
[8] Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide
Zhao Na, Wen Chen-Yu, Zhang David Wei, Wu Dong-Ping, Zhang Zhi-Bin, Zhang Shi-Li. Chin. Phys. B, 2014, 23(12): 128101.
No Suggested Reading articles found!