Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 038201    DOI: 10.1088/1674-1056/24/3/038201

Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization

Zhang Ying-Ying (张莹莹)a b, Xie Ting-Xian (解廷献)c, Li Ze-Rui (李泽瑞)a b, Shi Ying (石英)a b, Jin Ming-Xing (金明星)a b
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
b Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China;
c Department of Physics, Dalian Jiaotong University, Dalian 116028, China
Abstract  A quasi-classical trajectory (QCT) calculation is used to investigate the vector and scalar properties of the D+BrO→DBr+O reaction based on an ab initio potential energy surface (X1A' state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region (T < 100K). Meanwhile, three product angular distributions P(θr), P(ør), and P(θr,ør) are presented, which reflect the positive effect on the rotational angular momentum j' polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections (PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence.
Keywords:  quasi-classical trajectory      cross section      rate constant      product angular distributions  
Received:  19 September 2014      Revised:  21 October 2014      Accepted manuscript online: 
PACS:  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  
  82.20.Fd (Collision theories; trajectory models)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
Fund: Project supported by the Jilin University, China (Grant No. 419080106440), the Chinese National Fusion Project for the International Thermonuclear Experimental Reactor (ITER) (Grant No. 2010GB104003), and the National Natural Science Foundation of China (Grant No. 10974069).
Corresponding Authors:  Xie Ting-Xian, Shi Ying     E-mail:;

Cite this article: 

Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星) Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization 2015 Chin. Phys. B 24 038201

[1] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[2] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[3] Aguado A, Suárez C and M. Paniagua 1995 Chem. Phys. 201 107
[4] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[5] Skokov S, Peterson K A and Bowman J M 1998 J. Chem. Phys. 109 2662
[6] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[7] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[8] Shi Y, Xie T X and Jin M X 2011 Chin. J. Chem. Phys. 24 373
[9] Wei Q, Li X and Li T 2009 Chin. J. Chem. Phys. 22 523
[10] Xie T X 2012 J. Theor. Comput. Chem. 11 561
[11] Wine P H, Wells J R and Ravishankara A R 1986 J. Chem. Phys. 84 1349
[12] Orphal J, Kou Q, Tchana F K, Pirali O and Flaud J M 2003 J. Mol. Spectrosc. 221 239
[13] Cronkhite J M and Wine P H 1998 Int. J. Chem. Kinet. 30 555
[14] Zhang Y Y, Shi Y, Xie T X, Jin M X and Hu Z 2013 Chin. Phys. B 22 083402
[15] Li H, Zheng B, Yin J Q and Meng Q T 2012 J. At. Mol. Sci. 3 114
[16] Koga K, Takeo H, Kondo S, Sugie M, Matsumura C, McRae G A and Cohen E A 1989 J. Mol. Spectrosc. 138 467
[17] Brown R D H and Smith I W M 1975 Int. J. Chem. Kinet. 7 301
[18] McKendrick K G, Rakestraw D J, Zhang R and Zare R N 1988 J. Phys. Chem. 92 5530
[19] Balucani N, Beneventi L, Casavecchia P, Volpi G G, Kruss E J and Sloan J J 1994 Can. J. Chem. 72 888
[20] Peterson K A 2000 J. Chem. Phys. 113 4598
[21] Tang B Y, Tang Q K, Chen M D, Han K L and Zhang J Z H 2004 J. Chem. Phys. 120 8537
[22] Xie T X, Zhang Y Y, Shi Y, Li Z R and Jin M X Chin. Phys. B (Accepted)
[23] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[24] Zhang L, Chen M D, Wang M L and Han K L 2000 J. Chem. Phys. 112 3710
[25] Yue X F 2010 Chin. Phys. B 19 043401
[26] Li W L, Wang M S, Dong Y M and Yang C L 2008 Chem. Phys. 348 97
[27] Li X H, Wang M S, Pino I, Yang C L and Ma L Z 2009 Chem. Phys. Phys. Chem. 11 1043
[28] Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
[29] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[30] Zhao L, Sun P and Liu C Z 2011 Chin. Phys. Lett. 28 083101
[31] Chen Y Y and Zhao M Y 2012 J. Theor. Comput.Chem. 11 87
[32] Zhao D, He X H and Guo W 2014 Can. J. Chem. 92 250
[33] Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
[34] Gao S B, Wei W, Zheng B, Song Y Z and Meng Q T 2014 Int. J. Quan. Chem. 114 748
[35] Hankel M and Yue X F 2012 Comput. Theor. Chem. 990 23
[36] Liu R Z, Ding Y J, Wen C Y, Li J F, Zhong M W and Shi Y 2011 J. Theor. Comput.Chem. 10 447
[37] Aoiz F J, Ba nares L and Castillo J F 1999 J. Chem. Phys. 111 4013
[38] Tang B Y, Yang B H, Han K L, Zhang R Q and Zhang J Z H 2000 J. Chem. Phys. 113 10105
[39] Wu T, Werner H J and Manthe U 2006 J. Chem. Phys. 124 164307
[40] Wang Y P, Zhao M Y, Yao S H, Song P and Ma F C 2013 Chin. Phys. B 22 128201
[41] Duan Z X, Qiu M H and Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese)
[42] Liu S L and Shi Y 2010 Chin. Phys. Lett. 27 123103
[43] Yue X F 2013 Chin. Phys. B 22 113401
[44] Lin S Y and Guo H 2006 J. Chem. Phys. 124 031101
[45] Defazio P, Gamallo P, González M, Akpinar S, Bussery-Honvault B, Honvault P and Petrongolo C 2010 J. Chem. Phys. 132 104306
[46] Padmanaban R and Mahapatra S 2004 J. Chem. Phys. 121 7681
[47] Xu C X, Xie D Q, Honvault P, Lin S Y and Guo H 2007 J. Chem. Phys. 127 024304
[48] Jorfi M, Honvault P, Halvick P, Lin S Y and Guo H 2008 Chem. Phys. Lett. 462 53
[49] Jorfi M, Honvault P and Halvick P 2009 Chem. Phys. Lett. 471 65
[50] Liu Y F, Gao Y L, Shi D H and Sun J F 2009 Chem. Phys. 364 46
[51] Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
[52] Zhu T, Hu G D and Zhang Q G 2010 J. Mol. Struc. 948 36
[53] Liu S L and Shi Y 2011 Chem. Phys. Lett. 501 197
[1] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[2] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[3] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[4] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[5] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[6] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[7] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[8] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[9] A new global potential energy surface of the ground state of SiH$_{2}^{+}$(X$^{2}$A$_{1}$) system and dynamics calculations of the Si$^{+} +$ H$_{2}$ ($v_{0} = 2$, $j_{0} = 0$) $\to $ SiH$^{+} +$ H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[10] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[11] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[12] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[13] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[14] Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism
Xinmi Yang(杨歆汨), Changrong Liu(刘昌荣), Bo Hou(侯波), and Xiaoyang Zhou(周小阳). Chin. Phys. B, 2021, 30(10): 104102.
[15] Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV
Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2020, 29(7): 070702.
No Suggested Reading articles found!