Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 036401    DOI: 10.1088/1674-1056/24/3/036401

Structural phase transitions of tellurium nanoplates under pressure

Li Chaoa, Arfan Bukhtiarb, Shen Xia, Kong Pan-Pana, Wang Wei-Penga, Zhao Hao-Feia, Yao Yuana, Zou Bing-Suob, Li Yan-Chunc, Li Xiao-Dongc, Liu Jingc, Jin Chang-Qinga, Yu Ri-Chenga
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China;
c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China

In situ high-pressure angle dispersive x-ray diffraction experiments using synchrotron radiation on Te nanoplates were carried out with a diamond anvil cell at room temperature. The results show that Te-I with a trigonal structure transforms to triclinic Te-Ⅱ at about 4.9 GPa, Te-Ⅱ transforms to monoclinic Te-Ⅲ at about 8.0 GPa, Te-Ⅲ turns to rhombohedral Te-IV at about 23.8 GPa, and Te-IV changes to body centered cubic Te-V at 27.6 GPa. The bulk moduli B0 of Te nanoplates are higher than those of Te bulk materials.

Keywords:  tellurium nanoplates      phase transition      high pressure  
Received:  05 October 2014      Revised:  10 December 2014      Accepted manuscript online: 
PACS:  64.70.Nd (Structural transitions in nanoscale materials) (X-ray scattering (including small-angle scattering))  
  64.60.-i (General studies of phase transitions)  

Project supported by the State Key Development Program for Basic Research of China (Grant No. 2012CB932302) and the National Natural Science Foundation of China (Grant Nos. 10974235 and 11174336).

Corresponding Authors:  Yu Ri-Cheng     E-mail:

Cite this article: 

Li Chao, Arfan Bukhtiar, Shen Xi, Kong Pan-Pan, Wang Wei-Peng, Zhao Hao-Fei, Yao Yuan, Zou Bing-Suo, Li Yan-Chun, Li Xiao-Dong, Liu Jing, Jin Chang-Qing, Yu Ri-Cheng Structural phase transitions of tellurium nanoplates under pressure 2015 Chin. Phys. B 24 036401

[1] Aoki K, Shimomura O and Minomura S 1980 J. Phys. Soc. Jpn. 48 551
[2] Parthasarathy G and Holzapfel W B 1988 Phys. Rev. B 37 8499
[3] Jamieson J C and McWhan D B 1965 J. Chem. Phys. 43 1149
[4] Takumi M, Masamitsu T and Nagata K 2002 J. Phys.: Condens. Mater. 14 10609
[5] Hejny C and McMahon M I 2003 Phys. Rev. Lett. 91 215502
[6] Hejny C and McMahon M I 2004 Phys. Rev. B 70 184109
[7] Marini C, Chermisi D, Lavagnini M, Castro D D, Petrillo C, Degiorgi L, Scandolo S and Postorino P 2012 Phys. Rev. B 86 064103
[8] Song J M, Lin Y Z, Zhan Y J, Tian Y C, Liu G and Yu S H 2008 Cryst. Growth Des. 8 1902
[9] Beauvais J, Lessard R A, Galarneau P and Knystautas E 1990 J. Appl. Phys. Lett. 57 1354
[10] She G W, Shi W S, Zhang X H, Wong T L, Cai Y and Wang N 2009 Cryst. Growth Des. 9 663
[11] Gautam U K and Rao C N R 2004 J. Mater. Chem. 14 2530
[12] Engelhard T, Jones E D, Viney I, Mastai Y and Hodes G 2000 Thin Solid Films 370 101
[13] Souilhac D, Billerey D and Gundjian A 1990 Appl. Opt. 29 1798
[14] Liu Z P, Li S, Yang Y, Hu Z K, Peng S, Liang J B and Qian Y T 2003 New J. Chem. 27 1748
[15] Mayers B and Xia Y N 2002 J. Mater. Chem. 12 1875
[16] Mayers B and Xia Y N 2002 Adv. Mater. 14 279
[17] Zhu H T, Zhang H, Liang J K, Rao G H, Li J B, Liu G Y, Du Z M, Fan H M and Luo J 2011 Phys. Chem. C 115 6375
[18] Wang S, Guan W P, Ma D K, Chen X, Wan L, Huang S M and Wang J C 2010 Cryst. Eng. Commun. 12 166
[19] Wang S, Zhang K J, Zhou H A, Guan W P, Ma D K, Lin J J, Zhang L J, Huang S M and Wang J C 2010 Cryst. Eng. Commun. 12 3852
[20] Deng Z T, Bao Z X, Cao L, Chen D, Tang F Q, Wang F F, Liu C X, Zou B S and Muscat A J 2008 Nanotechnology 19 045707
[21] Murnaghan F D 1944 Proc. Nati. Acad. Sci. USA 30 244
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] McCann D R and Cartz L 1972 J. Appl. Phys. 43 4473
[24] Lingelbach W, Stuke J, Weiser G and Trensch J 1972 Phys. Rev. B 5 243
[25] Jiang S, Liu J, Li X D, Bai L G, Xiao W S, Zhang Y F, Lin C L, Li Y C and Tang L Y 2011 Appl. Phys. Lett. 110 013526
[26] Jiang S, Liu J, Lin C L, Bai L G, Zhang Y F, Li X D, Li Y C, Tang L Y and Wang H 2013 Solid State Commun. 169 37
[1] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[2] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[3] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[4] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[5] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[6] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[7] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[8] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[9] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[10] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[11] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[12] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[13] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[14] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[15] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
No Suggested Reading articles found!