Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 036802    DOI: 10.1088/1674-1056/24/3/036802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Water-assisted highly enhanced crystallographic etching of graphene by iron catalysts

Xue Lei-Jianga, Yu Fangb, Zhou Hai-Qingb, Sun Lian-Fengb
a College of Computer Science and Technology, Shandong University of Technology, Zibo 255049, China;
b National Centre for Nanoscience and Technology, Beijing 100190, China
Abstract  

We report the assisted role of water vapor in crystallographic cutting of graphene via iron catalysts in reduced atmosphere. Without water, graphene can be tailored with smooth trenches composed of straight lines with angles of 60° or 120° between two adjacent trenches. After the addition of water, new chacteristics are found: such as almost no iron particles can be detected along the trenches; each trench becomes longer and lots of graphene nanoribbons can be generated. The underlying mechanism is proposed and discussed, which is attributed to stimulating and lengthening of the catalytic activity of iron particles by water vapor.

Keywords:  graphene      Raman spectra      iron catalysts  
Received:  28 September 2014      Revised:  29 October 2014      Accepted manuscript online: 
PACS:  68.65.Pq (Graphene films)  
  78.30.-j (Infrared and Raman spectra)  
  81.65.Cf (Surface cleaning, etching, patterning)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 10774032) and the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. Y2010031).

Corresponding Authors:  Zhou Hai-Qing, Sun Lian-Feng     E-mail:  hqzhou0817@gmail.com;slf@nanoctr.cn

Cite this article: 

Xue Lei-Jiang, Yu Fang, Zhou Hai-Qing, Sun Lian-Feng Water-assisted highly enhanced crystallographic etching of graphene by iron catalysts 2015 Chin. Phys. B 24 036802

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Yang H, Shen C M, Tian Y, Wang G Q, Lin S X, Zhang Y, Gu C Z, Li J J and Gao H J 2014 Chin. Phys. B 23 096803
[5] Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Nature 462 192
[6] Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196
[7] Kim W Y and Kim K S 2008 Nat. Nanotechnol. 3 408
[8] Zhang Z H, Chen C F and Guo W L 2009 Phys. Rev. Lett. 103 187204
[9] Muñoz-Rojas F, Fernández-Rossier J and Palacios J J 2009 Phys. Rev. Lett. 102 136810
[10] Li X L, Wang X R, Zhang L, Lee S and Dai H J 2008 Science 319 1229
[11] Ritter K A and Lyding J W 2009 Nat. Mater. 8 235
[12] Ma L, Wang J L, Yip J and Ding F 2014 J. Phys. Chem. Lett. 5 1192
[13] Zoberbier T, Chamberlain T W, Biskupek J, Kuganathan N, Eyhusen S, Bichoutskaia E, Kaiser U and Khlobystov A N 2012 J. Am. Chem. Soc. 134 3073
[14] Wang J, Ma L, Yuan Q, Zhu L and Ding F 2011 Angew. Chem. Int. Ed. 50 8041
[15] Konishi S, Sugimoto W, Murakami Y and Takasu Y 2006 Carbon 44 2338
[16] Ma L, Wang J L and Ding F 2013 Chem. Phys. Chem. 14 47
[17] Lukas M, Meded V, Vijayaraghavan A, Song L, Ajayan P M, Fink K, Wenzel W and Krupke R 2013 Nat. Commun. 4 1379
[18] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K and Tour J M 2009 Nature 458 872
[19] Jiao L Y, Zhang L, Wang X R, Diankov G and Dai H J 2009 Nature 458 877
[20] Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J, Espinosa-González C G, Tristán-López F, Ramírez-González D, Cullen D A, Smith D J, Terrones M and Vega-CantúY I 2009 Nano Lett. 9 1527
[21] Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M and Dresselhaus M S 2009 Science 323 1701
[22] Warner J H, Rümmeli M H, Ge L, Gemming T, Montanari B, Harrison N M, Büchner B and Briggs G A D 2009 Nat. Nanotechnol. 4 500
[23] Ci L J, Xu Z P, Wang L L, Gao W, Ding F, Kelly K F, Yakobson B I and Ajayan P M 2008 Nano Res. 1 116
[24] Ci L J, Song L, Jariwala D, Elías A L, Gao W, Terrones M and Ajayan P M 2009 Adv. Mater. 21 4487
[25] Datta S S, Strachan D R, Khamis S M and Johnson A T C 2008 Nano Lett. 8 1912
[26] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J and Jarillo-Herrero P 2009 Nano Lett. 9 2600
[27] Yu F, Zhou H Q, Zhang Z X, Tang D S, Chen M J, Yang H C, Wang G, Yang H F, Gu C Z and Sun L F 2012 Appl. Phys. Lett. 100 101904
[28] Hata K, Futaba D N, Mizuno K, Namai T, Yumura M and Iijima S 2004 Science 306 1362
[29] Amama P B, Pint C L, McJilton L, Kim S M, Stach E A, Murray P T, Hauge R H and Maruyama B 2009 Nano Lett. 9 44
[30] Zhou H Q, Qiu C Y, Liu Z, Yang H C, Hu L J, Liu J, Yang H F, Gu C Z and Sun L F 2010 J. Am. Chem. Soc. 132 944
[31] Zhou H Q, Yu F, Yang H C, Qiu C Y, Chen M J, Hu L J, Guo Y J, Yang H F, Gu C Z and Sun L F 2011 Chem. Commun. 47 9408
[32] Zhao Y C, Song L, Deng K, Liu Z, Zhang Z X, Yang Y L, Wang C, Yang H F, Jin A Z, Luo Q, Gu C Z, Xie S S and Sun L F 2008 Adv. Mater. 20 1772
[33] Cancado L G, Pimenta M A, Neves B R A, Dantas M S S and Jorio A 2004 Phys. Rev. Lett. 93 247401
[34] You Y M, Ni Z H, Yu T and Shen Z X 2008 Appl. Phys. Lett. 93 163112
[35] Guo Y F and Guo W L 2011 J. Phys. Chem. C 115 20546
[36] Yu F, Zhou H Q, Zhang Z X, Wang G, Yang H C, Chen M J, Tao L, Tang D S, He J and Sun L F 2013 Small 9 2405
[37] Yu F, Zhou H Q, Yang H C, Chen M J, Wang G and Sun L F 2012 Chem. Commun. 48 1042
[1] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[7] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[12] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[13] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[14] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[15] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
No Suggested Reading articles found!