Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024205    DOI: 10.1088/1674-1056/24/2/024205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Position-dependent property of resonant dipole—dipole interaction mediated by localized surface plasmon of an Ag nanosphere

Xu Dan (许丹), Wang Xiao-Yun (王小云), Huang Yong-Gang (黄勇刚), Ouyang Shi-Liang (欧阳仕粮), He Hai-Long (何海龙), He Hao (何浩)
College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China
Abstract  We use the photon Green-function method to study the quantum resonant dipole-dipole interaction (RDDI) induced by an Ag nanosphere (ANP). As the distance between the two dipoles increases, the RDDI becomes weaker, which is accompanied by the influence of the higher-order mode of the ANP on RDDI declining more quickly than that of the dipole mode. Across a broad frequency range (above 0.05 eV), the transfer rate of the RDDI is nearly constant since the two dipoles are fixed at the proper position. In addition, this phenomenon still exists for slightly different radius of the ANPs. We find that the frequency corresponding to the maximum transfer rate of RDDI exhibits a monotonic decrease by moving away one dipole as the other dipole and the ANP are kept fixed. In addition, the radius of ANP has little effect on this. When the two dipoles are far from the ANP, the maximum transfer rate of the RDDI takes place at the frequency of the dipole mode. In contrast, when the two dipoles are close to the ANP, the higher-order modes come into effect and they will play a leading role in the RDDI if they match the transition frequency of the dipole. Our results may be used in a biological detector and have a certain guiding significance for further application.
Keywords:  quantum resonant dipole-dipole interaction      photonic Green function      surface plasmon  
Received:  22 May 2014      Revised:  02 September 2014      Accepted manuscript online: 
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347215, 11464014, and 11104113), the Natural Science Foundation of Hunan Province, China (Grant Nos. 13JJ6059 and 13JJB015), and the Natural Science Foundation of Education Department of Hunan Province, China (Grant Nos. 13C750 and 13B091).
Corresponding Authors:  Wang Xiao-Yun     E-mail:  wxyyun@163.com

Cite this article: 

Xu Dan (许丹), Wang Xiao-Yun (王小云), Huang Yong-Gang (黄勇刚), Ouyang Shi-Liang (欧阳仕粮), He Hai-Long (何海龙), He Hao (何浩) Position-dependent property of resonant dipole—dipole interaction mediated by localized surface plasmon of an Ag nanosphere 2015 Chin. Phys. B 24 024205

[1] Purcell E M 1946 Phys. Rev. 69 681
[2] Yokoyama H 1992 Science 256 66
[3] Wang Y, Wu Q, He X J, Zhang S Q and Zhung L L 2009 Chin. Phys. B 18 1801
[4] Liu S P, Li J H, Yu R and Wu Y 2013 Phys. Rev. A 87 042306
[5] Thon S M, Rakher M T, Kim H, Gudat J, Irvine W T M, Petroff P M and Bouwmeester D 2009 Appl. Phys. Lett. 94 111115
[6] Wang X H, Gu B Y, Wang R Z and Xu H Q 2003 Phys. Rev. Lett. 91 113904
[7] Liu Z Q, Feng T H, Dai Q F, Wu L J, Lan S, Ding C R, Wang H Z and Venu G A 2010 Chin. Phys. B 19 114210
[8] Agarwal G S 1975 Phys. Rev. A 12 1475
[9] Meschede D, Walther H and Muller G 1985 Phys. Rev. Lett. 54 551
[10] Guo H and Xiong H N 2008 Chin. Phys. B 17 971
[11] Lu H Y, Lu H, Zhang J N, Qiu R Z, Pu H and Yi S 2010 Phys. Rev. A 82 023622
[12] Cheng M T, Ma X S and Wang X 2014 Chin. Phys. Lett. 31 014202
[13] Kim H, Sridharan D, Shen T C, Solomon G S and Waks E 2011 Opt. Express 19 2589
[14] Zhou F, Liu Y and Li Z Y 2011 Opt. Lett. 36 1969
[15] Martín-Cano D, González-Tudela A, Martín-Moreno L, García-Vidal F J, Tejedor C and Moreno E 2011 Phys. Rev. B 84 235306
[16] Yang P F, Di Z G and Xu H X 2013 Opt. Express 21 17053
[17] Dai D X and He S L 2010 Opt. Express 18 17958
[18] Berini P 2000 Phys. Rev. B 61 10484
[19] Takahara J, Yamagishi S, Taki H, Morimoto A and Kobayashi T 1997 Opt. Lett. 22 475
[20] Pile D F P, Ogawa T, Gramotnev D K, Matsuzaki Y, Vernon K C, Yamaguchi K, Okamoto T, Haraguchi M and Fukui M 2005 Appl. Phys. Lett. 87 261114
[21] Tong L M and Xu H X 2012 Physics 41 582 (in Chinese)
[22] Yao P and Hughes S 2009 Opt. Express 17 11505
[23] Liu S P, Yu R, Li J H and Wu Y 2013 J. Appl. Phys. 114 244306
[24] Hughes S 2005 Phys. Rev. Lett. 94 227402
[25] Huang Y G, Chen G Y, Jin C J, Liu W M and Wang X H 2012 Phys. Rev. A 85 053827
[26] Liao X P, Fang M F, Cai J W and Zheng X J 2008 Chin. Phys. B 17 2137
[27] Cui L K, Zhang Y J, Man Z X and Xia Y J 2012 Chin. Phys. B 21 100202
[28] Chen L Shao X Q and Zhang S 2009 Chin. Phys. B 18 0888
[29] Ruostekoski J and Javanainen J 1997 Phys. Rev. A 55 513
[30] Xie H Y, Chung H Y, Leung P T and Tsai D P 2009 Phys. Rev. B 80 155448
[31] Dung H T, Knöll L and Welsch D G 2002 Phys. Rev. A 66 063810
[32] Protsenko I E, Uskov A V, Zaimidoroga O A, Samoilov V N and O'Reilly E P 2005 Phys. Rev. A 71 063812
[33] Reinhard A, Younge K C, Liebisch T C, Knuffman B, Berman P R and Raithel G 2008 Phys. Rev. Lett. 100 233201
[34] Saquet N, Cournol A, Beugnon J, Robert J, Pillet P and Vanhaecke N 2010 Phys. Rev. Lett. 104 133003
[35] Harlander M, Lechner R, Brownnutt M, Blatt R and Ha Sel W 2011 Nature 471 200
[36] Agarwal G S and DuttaGupta S 1998 Phys. Rev. A 57 667
[37] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C and Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501
[38] Schmid S I and Evers J 2008 Phys. Rev. A 77 013822
[39] Agarwal G S and Patnaik A K 2001 Phys. Rev. A 63 043805
[40] Goldstein E V and Meystre P 1997 Phys. Rev. A 56 5135
[41] Kobayashi T, Zheng Q B and Sekiguchi T 1995 Phys. Rev. A 52 2835
[42] Rist S, Eschner J, Hennrich M and Morigi G 2008 Phys. Rev. A 78 013808
[43] Bay S, Lambropoulos P and Molmer K 1997 Phys. Rev. A 55 1485
[44] Novotny L and Hecht B 2006 Principles of Nano-Optics, Vol. 1 (Cambridge: Cambridge University Press) pp. 260-298
[45] Tai C T 1971 in Dyadic Green's Functions in Electromagnetic Theory (Scranton: Intext Educational Publishers) pp. 55-66
[46] Vlack C V, Kristensen P T and Hughes S 2012 Phys. Rev. B 85 075303
[47] Li L W, Kooi P S, Leong M S and Yeo T S 1994 IEEE Trans. Microwave Theor. Tech. 42 2302
[48] Jensen T, Kelly L, Lazarides A and Schatz G C 1999 J. Clust. Sci. 10 295
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[14] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[15] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
No Suggested Reading articles found!