Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 105203    DOI: 10.1088/1674-1056/23/10/105203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

U. Ikhlaqa, R. Ahmadb, M. Shafiqc, S. Saleema, M. S. Shaha, T. Hussainb, I. A. Khand, K. Abbasa, M. S. Abbasb
a Department of Physics, Government College University, Lahore 54000, Pakistan;
b Centre for Advanced Studies in Physics (CASP), Government College University, Lahore 54000, Pakistan;
c Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan;
d Department of Physics, GC University Faisalabad, Faisalabad 38000, Pakistan
Abstract  Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar=105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.
Keywords:  pulsed DC glow discharge      scanning electron microscopy      atomic force microscopy      microhardness  
Received:  22 November 2013      Revised:  06 June 2014      Accepted manuscript online: 
PACS:  52.80.Hc (Glow; corona)  
  61.05.cp (X-ray diffraction)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  68.37.Ps (Atomic force microscopy (AFM))  
Corresponding Authors:  R. Ahmad     E-mail:  ahriaz@gcu.edu.pk
About author:  52.80.Hc; 61.05.cp; 68.37.Hk; 68.37.Ps

Cite this article: 

U. Ikhlaq, R. Ahmad, M. Shafiq, S. Saleem, M. S. Shah, T. Hussain, I. A. Khan, K. Abbas, M. S. Abbas Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique 2014 Chin. Phys. B 23 105203

[1]Paulson K, Lionheart W and Pidcock M 1993 IEEE Trans. Med. Imag. 12 681
[21]Qayyum A, Ikram M, Zakaullah M, Waheed A, Murtaza G, Ahmad R, Majeed A. Khattak N A D, Mansoor K and Chaudhry K A 2003 Int. J. Mod. Phys. B 17 2749
[2]Metheral P, Barber D C, Smallwood R H and Brown B H 1996 Nature 380 509
[22]Barbosa J, Cunha L, Rebouta L, Moura C, Vaz F, Carvalho S, Alves E, Bourhis E L, Goudeau P and Riviere J P 2006 Thin Solid Films 494 201
[3]Griffiths H 2001 Meas. Sci. Technol. 12 1126
[23]Wang Y and Lin R Y 2004 Mater. Sci. Eng. B 112 42
[24]Fujimoto F, Nakane Y, Satou M Komori F, Ogata K and Andoh Y 1987 Nucl. Instrum. Methods Phys. Res. Part B 19/20 791
[25]Ihara H, Kimura Y, Senzaki K, Kezuka H and Hirabayashi M 1985 Phys. Rev. B 31 3177
[4]Han W, Shah J and Balaban R S 1998 IEEE Trans. Med. Imag. 45 119
[26]Perry A J, Baouchi A W, Petersen J H and Pozder S D 1992 Surf. Coat. Technol. 54/55 261
[5]Jensen J A and Svendsen N B 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 262
[27]Shah M S, Shah M S, Ahmad R, Zakaullah M and Murtaza G 2008 Plasma Devices Operations 16 247
[28]Shen Y G 2003 Mater. Sci. Eng. A 359 158
[6]Li X and He B 2010 IEEE Trans. Med. Imag. 29 1759
[29]Hassan A M and Al-Basharat A S 1996 Wear. 199 1
[7]Xia R, Li X and He B 2010 IEEE Trans. Biomed. Eng. 57 708
[30]Qi J, Luo J B, Wen S Z, Wang J and Li W Z 2000 Surf. &Coat. Technol . 128-129 324
[31]Wang L Ji S and Sun J 2006 Surf. & Coat. Technol. 200 5067
[8]Renzhiglova E, Ivantsiv V and Xu Y 2010 IEEE Trans. Ultrason. Ferroelect. Freq. Control 57 2391
[9]Leonid K 2012 Inverse Problems 28 035002
[32]Paul A and Wingbermhle J 2006 Appl. Surf. Sci. 252 8151
[1] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[2] Characterization of a nano line width reference material based on metrological scanning electron microscope
Fang Wang(王芳), Yushu Shi(施玉书), Wei Li(李伟), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Shu Zhang(张树), and Xixi Yu(余茜茜). Chin. Phys. B, 2022, 31(5): 050601.
[3] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[4] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[5] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[6] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[7] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[8] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[9] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[10] Improvement of the high-κ/Ge interface thermal stability using an in-situ ozone treatment characterized by conductive atomic force microscopy
Ji-Bin Fan(樊继斌), Xiao-Jiao Cheng(程晓姣), Hong-Xia Liu(刘红侠), Shu-Long Wang(王树龙), Li Duan(段理). Chin. Phys. B, 2017, 26(8): 087701.
[11] Interfacial nanobubbles produced by long-time preserved cold water
Li-Min Zhou(周利民), Shuo Wang(王硕), Jie Qiu(邱杰), Lei Wang(王磊), Xing-Ya Wang(王兴亚), Bin Li(李宾), Li-Juan Zhang(张立娟), Jun Hu(胡钧). Chin. Phys. B, 2017, 26(10): 106803.
[12] Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy
Zhang Yong (张勇), Wang Ye-Liang (王业亮), Que Yan-De (阙炎德), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(7): 078104.
[13] Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition
Liu Bo (刘波), Zhang Sen (张森), Yin Jia-Yun (尹甲运), Zhang Xiong-Wen (张雄文), Dun Shao-Bo (敦少博), Feng Zhi-Hong (冯志红), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2013, 22(5): 057105.
[14] Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques
Zhang Yue-Fei(张跃飞), Wang Li(王丽), R. Heiderhoff, A. K. Geinzer, Wei Bin(卫斌), Ji Yuan(吉元), Han Xiao-Dong(韩晓东), L.J. Balk, and Zhang Ze(张泽) . Chin. Phys. B, 2012, 21(1): 016501.
[15] Optical and atomic force microscopic study on step bunching in BaB2O4 crystal growth
Pan Xiu-Hong(潘秀红), Jin Wei-Qing(金蔚青), Liu Yan(刘岩), Ai Fei(艾飞), Jin Fei(金飞), and Xie Jun-Jie(解俊杰). Chin. Phys. B, 2011, 20(2): 028102.
No Suggested Reading articles found!