Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104219    DOI: 10.1088/1674-1056/23/10/104219
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Highly sensitive fiber refractive index sensor based on side-core holey structure

Han Ya (韩雅), Xia Li (夏历), Liu De-Ming (刘德明)
Next Generation Internet Access National Engineering Laboratory (NGIA), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
Abstract  We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlapping area of the core mode and surface plasmon polariton (SPP) mode. The coupling properties of the sensor are analyzed by numerical simulation. The maximum sensitivity of 5000 nm/RIU in an RI range of 1.33-1.44, and the average sensitivity of 9295 nm/RIU in an RI range from 1.44 to 1.54 can be obtained.
Keywords:  holy fiber      surface plasmon resonance      refractive index      fiber sensor  
Received:  21 November 2013      Revised:  28 March 2014      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.81.Pa (Sensors, gyros)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the Major Projects of the National Natural Science Foundation of China (Grant No. 61290315), the National Natural Science Foundation of China (Grant No. 61340057), and the Special Program of the National Modern Service Industrial Development Foundation of China (Grant No. [2012]14).
Corresponding Authors:  Xia Li     E-mail:  xiali@hust.edu.cn
About author:  42.81.-i; 42.81.Pa; 71.45.Gm

Cite this article: 

Han Ya (韩雅), Xia Li (夏历), Liu De-Ming (刘德明) Highly sensitive fiber refractive index sensor based on side-core holey structure 2014 Chin. Phys. B 23 104219

[1]Lee B, Roh S and Park J 2009 Opt. Fiber Technol. 15 209
[2]Yang P F, Gu Y and Gong Q H 2008 Chin. Phys. B 17 3880
[3]Du Y, Li S G and Liu S 2012 Chin. Phys. B 21 094219
[4]Qin W, Li S G, Xue J R, Xin X J and Zhang L 2013 Chin. Phys. B 22 074213
[5]Lin K Q, Wei L M, Zhang D G, Zheng R S, Wang P, Lu Y H and Ming H 2007 Chin. Phys. Lett. 24 3081
[6]Jiri H, Sinclair S Y and Gunter G 1999 Sensors and Actuators B 54 3
[7]Schmidt M A, Sempere L N P, Tyagi H K, Poulton C G and Russell P St J 2008 Phys. Rev. B 77 033417
[8]Hassani A and Skorobogatiy M 2006 Opt. Express 14 11616
[9]Yu X, Zhang Y, Pan S S, Shum P, Yan M, Yehuda Leviatan and Li C M 2010 J. Opt. 12 015005
[10]Zhang Y T, Xia L, Zhou C, Yu X, Liu H R, Liu D M and Zhang Y 2011 Opt. Commun. 284 4161
[11]Zhou C, Zhang Y T, Xia L and Liu D M 2012 Opt. Commun. 285 2466
[12]Saitoh K, Sato Y and Koshiba M 2003 Opt. Express 11 3188
[13]Russell P St J 2006 J. Lightwave Technol. 24 4729
[14]Brechet F, Marcou J, Pagnoux D and Roy P 2000 Opt. Fiber Technol. 6 181
[15]Zhang Y T, Zhou C, Xia L, Yu X and Liu D M 2011 Opt. Express 19 22863
[16]Yu X, Zhang S, Zhang Y, Ho H P, Shum P, Liu H and Liu D 2010 Opt. Express 18 17950
[17]Shuai B B, Xia L, Zhang Y T and Liu D M 2012 Opt. Express 20 5974
[18]Zhang Z H, Shi Y F, Bian B M and Lu J 2008 Opt. Express 16 1915
[19]Shevchenko Y Y and Albert J 2007 Opt. Lett. 32 211
[20]Zeng J and Liang D 2006 J. Intell. Mater. Syst. Struct. 17 787
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[5] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[10] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[11] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[12] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[13] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[14] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[15] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
No Suggested Reading articles found!