Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088108    DOI: 10.1088/1674-1056/23/8/088108
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of graphene defects on Co cluster nucleation and intercalation

Xu Wen-Yana b, Huang Lia b, Que Yan-Dea b, Lin Xiaob a, Wang Ye-Lianga b, Du Shi-Xuana b, Gao Hong-Juna b
a Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Four kinds of defects are observed in graphene grown on Ru (0001) surfaces. After cobalt deposition at room temperature, the cobalt nanoclusters are preferentially located at the defect position. By annealing at 530 ℃, cobalt atoms intercalate at the interface of Graphene/Ru (0001) through the defects. Further deposition and annealing increase the sizes of intercalated Co islands. This provides a method of controlling the arrangement of cobalt nanoclusters and also the density and the sizes of intercalated cobalt islands, which would find potential applications in catalysis industries, magnetism storage, and magnetism control in future information technology.
Keywords:  graphene      defects      cobalt      intercalation      scanning tunneling microscopy     
Received:  09 April 2014      Published:  15 August 2014
PACS:  81.05.ue (Graphene)  
  87.64.Dz (Scanning tunneling and atomic force microscopy)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  68.55.at (Other materials)  
Fund: Project supported by Funds from the Ministry of Science and Technology of China (Grant Nos. 2013CBA01600 and 2011CB932700), the National Natural Science Foundation of China (Grant Nos. 61222112 and 11334006), and the Funds from the Chinese Academy of Sciences.
Corresponding Authors:  Lin Xiao, Wang Ye-Liang, Gao Hong-Jun     E-mail:  xlin@ucas.ac.cn;ylwang@iphy.ac.cn;hjgao@iphy.ac.cn

Cite this article: 

Xu Wen-Yan, Huang Li, Que Yan-De, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun Effects of graphene defects on Co cluster nucleation and intercalation 2014 Chin. Phys. B 23 088108

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Müllen K and Rabe J P 2008 Acc. Chem. Res. 41 511
[3] Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217
[4] Pan Y, Gao M, Huang L, Liu F and Gao H J 2009 Appl. Phys. Lett. 95 093106
[5] Halperin W P 1986 Rev. Mod. Phys. 58 533
[6] Boyen H G, Kastle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz J P, Riethmuller S, Hartmann C, Moller M, Schmid G, Garnier M G and Oelhafen P 2002 Science 297 1533
[7] Billas I M L, Chatelain A and de Heer W A 1994 Science 265 1682
[8] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[9] Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
[10] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[11] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[12] Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Castro Neto A H and Gao H J 2012 Appl. Phys. Lett. 100 093101
[13] Wintterlin J and Bocquet M L 2009 Surf. Sci. 603 1841
[14] Rutter G M, Crain J N, Guisinger N P, Li T, First P N and Stroscio J A 2007 Science 317 219
[15] Coraux J, N'Diaye A T, Busse C and Michely T 2008 Nano Lett. 8 565
[16] Farías D, Shikin A M, Rieder K H and Dedkov Y S 1999 J. Phys.: Condens. Matter 11 8453
[17] Starodubov A G, Medvetski M A, Shikin A M and Adamchuk V K 2004 Phys. Solid State 46 1340
[18] Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X and Gao H J 2011 Appl. Phys. Lett. 99 163107
[19] Shikin A M, Prudnikova G V, Adamchuk V K, Moresco F and Rieder K H 2000 Phys. Rev. B 62 13202
[20] Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
[21] Enderlein C, Kim Y S, Bostwick A, Rotenberg E and Horn K 2010 New J. Phys. 12 033014
[22] Dedkov Y, Shikin A, Adamchuk V, Molodtsov S, Laubschat C, Bauer A and Kaindl G 2001 Phys. Rev. B 64 035405
[23] Huang L, Xu W Y, Que Y D, Pan Y, Gao M, Pan L D, Guo H M, Wang Y L, Du S X and Gao H J 2012 Chin. Phys. B 21 088102
[1] Intercalation of van der Waals layered materials: A route towards engineering of electron correlation
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(9): 097104.
[2] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[3] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[4] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[5] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[6] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[7] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[8] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[9] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[10] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[11] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[12] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[13] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[14] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[15] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
No Suggested Reading articles found!