Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 066104    DOI: 10.1088/1674-1056/23/6/066104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The generalized planar fault energy, ductility, and twinnability of Al and Al-RE (RE=Sc, Y, Dy, Tb, Nd) at different temperatures:A first-principles study

Wu Xiao-Zhia b c, Liu Li-Lic, Wang Ruic, Liu Qinga b
a College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
b National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;
c College of Physics and Institute for Structure and Function, Chongqing University, Chongqing 401331, China
Abstract  The genearlized planar fault energies of Al and Al-RE (RE = Sc, Y, Dy, Tb, Nd) alloys have been investigated using first-principles methods combined with a quasiharmonic approach. The stacking fault energies, unstable stacking fault energies, and unstable twinning energies decrease slightly with increasing temperature. The ductility parameter D, the relative barrier difference δusut, and the twinnability τa of Al and Al-RE alloys at different temperatures have been determined. It is found that the ductilities of Al and Al alloys are nearly the same and the ductilities increase slightly with increasing temperature. The RE alloying elements make twinning more likely and the twinnabilities of Al and Al alloys decrease with increasing temperature.
Keywords:  twinnability      temperature      generalized planar fault energy  
Received:  22 July 2013      Revised:  04 December 2013      Published:  15 June 2014
PACS:  61.72.J- (Point defects and defect clusters)  
  61.72.Mm (Grain and twin boundaries)  
  61.72.Nn (Stacking faults and other planar or extended defects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104361 and 11304403) and the Fundamental Research Funds for the Central Universities, China (Grant No. CQDXWL2012015).
Corresponding Authors:  Wu Xiao-Zhi, Liu Qing     E-mail:  xiaozhiwu@cqu.edu.cn;qingliu@cqu.edu.cn

Cite this article: 

Wu Xiao-Zhi, Liu Li-Li, Wang Rui, Liu Qing The generalized planar fault energy, ductility, and twinnability of Al and Al-RE (RE=Sc, Y, Dy, Tb, Nd) at different temperatures:A first-principles study 2014 Chin. Phys. B 23 066104

[1] Hirth J P and Lothe J 1982 Theory of Dislocations, 2nd edn. (New York: John Wiley)
[2] Christian J W and Mahajan S 1995 Prog. Mater. Sci. 39 1
[3] Xie H X, Wang C Y, Yu T and Du J P 2009 Chin. Phys. B 18 251
[4] Swygenhoven H V, Derlet P M and Froseth A G 2004 Nat. Mater. 3 399
[5] Froseth A G, Derlet P M and Swygenhoven H V 2004 Appl. Phys. Lett. 85 5863
[6] Asaro R J and Suresh S 2005 Acta Mater. 53 3369
[7] Hai S and Tadmor E B 2003 Acta Mater. 51 117
[8] Siegel D J 2005 Appl. Phys. Lett. 87 121901
[9] Kibey S, Liu J B, Johnson D D and Sehitoglu H 2006 Appl. Phys. Lett. 89 191911
[10] Muzyk M, Pakiela Z and Kurzydlowski K J 2011 Scr. Mater. 64 916
[11] Saka H, Sueki Y and Imura T 1978 Philos. Mag. A 37 273
[12] Shang S L, Wang W Y, Wang Y, Du Y, Zhang J X, Patel A D and Liu Z K 2012 J. Phys.: Condens. Matter 24 155402
[13] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[14] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 78 1396
[17] Slater J C 1964 J. Chem. Phys. 41 3199
[18] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[19] van de Walle A and Geder G 2002 Rev. Mod. Phys. 74 11
[20] Kresse G, Marsman M and Furthmüller J VASP the Guidehttp://cms.mpi.univie.ac.at/vasp/
[21] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[22] Togo A, Chaput L, Tanaka I and Hug G 2010 Phys. Rev. B 81 174301
[23] Togo A 2009 Phonopy http://phonopy.sourceforge.net/
[24] de Gironcoli S 1995 Phys. Rev. B 51 6773
[25] Savrasov S Y and Savrasov D Y 1996 Phys. Rev. B 16 487
[26] Moriarty J A, Belak J F, Rudd R E, Soerlind P, Streitz F H and Yang L H 2002 J. Phys.: Condens. Matter 14 2825
[27] Wasserman E, Stixrude L and Cohen R E 1996 Phys. Rev. B 53 8296
[28] Sha X W and Cohen R E 2010 Phys. Rev. B 81 095105
[29] Wang Y, Liu Z K and Chen L Q 2004 Acta Mater. 52 2665
[30] Shang S L, Wang Y, Kim D E and Liu Z K 2010 Comput. Mater. Sci. 47 1040
[31] Liu J Z, Ghosh G, van de Walle A and Asta M 2007 Phys. Rev. B 75 104117
[32] Orlikowski D, Söderlind P and Moriarty J A 2006 Phys. Rev. B 74 054109
[33] Vinet P, Rose J H, Ferrante J and Smith J R 1989 J. Phys.: Condens. Matter 1 1941
[34] An M R, Song H Y and Su J F 2012 Chin. Phys. B 21 106202
[35] Shao Y F, Yang X, Zhao X and Wang S Q 2012 Chin. Phys. B 21 093104
[36] Wu X Z, Wang S F and Liu R P 2009 Chin. Phys. B 18 2905
[37] Rice J R 1992 J. Mech. Phys. Solids 40 239
[38] Bernstein N and Tadmor E B 2004 Phys. Rev. B 69 094116.
[39] Tadmor E B and Bernstein N 2004 J. Mech. Phys. Solids 52 2507
[40] Smallman R E and Dobson P S 1970 Metall. Trans. 1 2383
[41] Mehl M J, Papaconstantopoulos D A, Kioussis N and Herbranson M 2000 Phys. Rev. B 61 4894
[42] Basinski Z S, Szcerba M S and Embury J D 1997 Philos. Mag. A 76 743
[43] Ratuszek W and Karp J 1976 Met. Sci. 10 214
[1] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[2] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[3] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[4] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[5] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[6] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[7] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[8] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[9] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[10] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[11] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[12] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[13] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[14] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[15] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
No Suggested Reading articles found!