Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 068701    DOI: 10.1088/1674-1056/23/6/068701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ising model on evolution networks and its application on opinion formation

Zhu Xiao-Longa b, Zhang Hai-Tianb c, Sang Jian-Pinga b, Huang Sheng-Youb, Zou Xian-Wub
a School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China;
b School of Physics and Technology, Wuhan University, Wuhan 430072, China;
c Hubei Air Traffic Management Sub-Bureau of CAAC, Wuhan 430302, China
Abstract  Many phenomena show that in a favorable circumstance an agent still has an updating possibility, and in an unfavorable circumstance an agent also has a possibility of holding its own state and reselecting its neighbors. To describe this kind of phenomena an Ising model on evolution networks was presented and used for consensus formation and separation of opinion groups in human population. In this model the state-holding probability p and selection-rewiring probability q were introduced. The influence of this mixed dynamics of spin flips and network rewiring on the ordering behavior of the model was investigated. p hinders ordering of opinion networks and q accelerates the dynamical process of networks. Influence of q on the ordering and separating stems from its effect on average path length of networks.
Keywords:  opinion formation      Ising model      evolution networks  
Received:  09 October 2013      Revised:  28 November 2013      Published:  15 June 2014
PACS:  87.23.Ge (Dynamics of social systems)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304123) and the Scientific Research Foundation of Jianghan University (Grant No. 2010014).
Corresponding Authors:  Sang Jian-Ping     E-mail:  jpsang@acc-lab.whu.edu.cn

Cite this article: 

Zhu Xiao-Long, Zhang Hai-Tian, Sang Jian-Ping, Huang Sheng-You, Zou Xian-Wu Ising model on evolution networks and its application on opinion formation 2014 Chin. Phys. B 23 068701

[1] Krapivsky P L 1992 Phys. Rev. A 45 1067
[2] Axelrod R 1997 J. Conflict Resolut. 41 203
[3] Deffuant G, Neau D, Amblard F and Weisbuch G 2000 Adv. Complex Syst. 3 87
[4] Sznajd-Weron K and Sznajd J 2000 Int. J. Mod. Phys. C 11 1157
[5] Sun W and Dou L H 2010 Chin. Phys. B 19 120513
[6] Hegselmann R and Krause U 2002 Journal of Artificial Societies and Social Simulation 5 2
[7] Ding F, Liu Y, Shen B and Si X M 2010 Physica A 389 1745
[8] Guo Q, Liu J G, Wang B H, Zhou T, Chen X W and Yao Y H 2008 Chin. Phys. Lett. 25 773
[9] Duan W Q, Chen Z and Liu Z R 2005 Chin. Phys. Lett. 22 2137
[10] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[11] Cheng J, Zhang J W and Di Z R 2010 Physics 39 101 (in Chinese)
[12] Newman M 2008 Phys. Today 11 33
[13] Pękalski A 2001 Phys. Rev. E 64 057104
[14] Herrero C P 2002 Phys. Rev. E 65 066110
[15] Jeong D, Hong H, Kim B J and Choi M Y 2003 Phys. Rev. E 68 027101
[16] Chang Y, Sun L and Cai X 2007 Phys. Rev. E 76 021101
[17] Chatterjee A and Sen P 2006 Phys. Rev. E 74 036109
[18] Barrat A and Weigt M 2000 Eur. Phys. J. B 13 547
[19] Gitterman M 2000 J. Phys. A: Math. Gen. 33 8373
[20] Dorogovtsev S N, Goltsev A V and Mendes J F F 2002 Phys. Rev. E 66 016104
[21] Aleksiejuk A, Holyst J A and Stauffer D 2002 Physica A 310 260
[22] Zhou W X and Sornette D 2007 Eur. Phys. J. B 55 175
[23] Zaklan G, Westerhoff F and Stauffer D 2009 J. Econ. Interact. Coordination 4 1
[24] Svenson P and Johnston D A 2002 Phys. Rev. E 65 036105
[25] Hong H, Kim B J and Choi M Y 2002 Phys. Rev. E 66 011107
[26] Grabowskia A and Kosińskia R A 2006 Physica A 361 651
[27] Dasgupta S, Pan R K and Sinha S 2009 Phys. Rev. E 80 025101
[28] Luo Z, Yang G Q and Di Z R 2012 Acta Phys. Sin. 61 190509 (in Chinese)
[29] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[30] Holme P and Newman M E J 2006 Phys. Rev. E 74 056108
[31] Caldarelli G, Capocci A and Garlaschelli D 2007 Nat. Phys. 11 813
[32] Stauffer D, Hohnisch M and Pittnauer S 2006 Physica A 370 734
[33] Ehrhardt G, Marsili M and Vega-Redondo F 2006 Int. J. Game Theory 34 383
[34] Zimmermann M G, Eguíluz V M and Miguel M S 2004 Phys. Rev. E 69 065102
[35] Centola D, González-Avella J C, Eguíluz V M and Miguel M S 2007 J. Conflict Resolut. 51 905
[36] Zanette D H and Gil S 2006 Physica D 224 156
[37] Kozma B and Barrat A 2008 J. Phys. A: Math. Theor. 41 224020
[38] Hu K and Tang Y 2008 Chin. Phys. B 17 3536
[39] Kozma B and Barrat A 2008 Phys. Rev. E 77 016102
[40] Nardini C, Kozma B and Barrat A 2008 Phys. Rev. Lett. 100 158701
[41] Wang R and Cai X 2008 Int. J. Mod. Phys. C 19 1939
[42] Benczik I J, Benczik S Z, Schmittmann B and Zia R K P 2009 Phys. Rev. E 79 046104
[43] Stauffer D 2007 arXiv: 0705.0891
[1] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[2] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[3] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[4] Entanglement in a two-spin system with long-range interactions
Soltani M R, Mahdavifar S, Mahmoudi M. Chin. Phys. B, 2016, 25(8): 087501.
[5] The spin dynamics of the random transverse Ising chain with a double-Gaussian disorder
Liu Zhong-Qiang, Jiang Su-Rong, Kong Xiang-Mu. Chin. Phys. B, 2014, 23(8): 087505.
[6] Comment on ‘Mathematical structure of the three-dimensional (3D)Ising model’
Jacques H. H. Perk. Chin. Phys. B, 2013, 22(8): 080508.
[7] Mathematical structure of the three-dimensional (3D) Ising model
Zhang Zhi-Dong. Chin. Phys. B, 2013, 22(3): 030513.
[8] Dynamic compensation temperature in kinetic spin-5/2 Ising model on hexagonal lattice
Ümüt Temizer, Ayşegül Özkılıç. Chin. Phys. B, 2013, 22(3): 037501.
[9] Entanglement and quantum phase transition in the Heisenberg-Ising model
Tan Xiao-Dong, Jin Bai-Qi, Gao Wei. Chin. Phys. B, 2013, 22(2): 020308.
[10] Simulations of the flipping images and microparameters of molecular orientations in liquids according to molecule string model
Wang Li-Na, Zhao Xing-Yu, Zhang Li-Li, Huang Yi-Neng. Chin. Phys. B, 2012, 21(8): 086403.
[11] An extended chain Ising model and its Glauber dynamics
Zhao Xing-Yu,Huang Xin-Ru,Fan Xiao-Hui,Huang Yi-Neng. Chin. Phys. B, 2012, 21(2): 027501.
[12] The hysteresis loops of a ferroelectric bilayer film with surface transition layers
Cui Lian, Lü Tian-Quan, Sun Pu-Nan, Xue Hui-Jie. Chin. Phys. B, 2010, 19(7): 077701.
[13] Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
Bayram Deviren, Osman Canko, Mustafa Keskin. Chin. Phys. B, 2010, 19(5): 050518.
[14] Critical behaviour of the ferromagnetic Ising model on a triangular lattice
Luo Zhi-Huan, Loan Mushtaq, Liu Yan, Lin Jian-Rong. Chin. Phys. B, 2009, 18(7): 2696-2702.
[15] Influence of lateral size on dielectric properties of ferroelectric thin films with structure transition zones
Zhou Jing, Lü Tian-Quan, Xie Wen-Guang, Cao Wen-Wu. Chin. Phys. B, 2009, 18(7): 3054-3060.
No Suggested Reading articles found!