Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 066802    DOI: 10.1088/1674-1056/23/6/066802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Atomic diffusion across Ni50Ti50–Cu explosive welding interface:Diffusion layer thickness and atomic concentration distribution

Chen Shi-Yang (陈仕洋)a, Wu Zhen-Wei (武振伟)a, Liu Kai-Xin (刘凯欣)a b
a LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;
b Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  Molecular dynamics simulations are carried out to study atomic diffusion in the explosive welding process of Ni50Ti50-Cu (at.%). By using a hybrid method which combines molecular dynamics simulation and classical diffusion theory, the thickness of the diffusion layer and the atomic concentration distribution across the welding interface are obtained. The results indicate that the concentration distribution curves at different times have a geometric similarity. According to the geometric similarity, the atomic concentration distribution at any time in explosive welding can be calculated. Ni50Ti50-Cu explosive welding and scanning electron microscope experiments are done to verify the results. The simulation results and the experimental results are in good agreement.
Keywords:  diffusion      interfaces      explosive welding      molecular dynamics  
Received:  07 October 2013      Revised:  11 December 2013      Accepted manuscript online: 
PACS:  68.35.Fx (Diffusion; interface formation)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10732010, 10972010, 11332002, and 11028206).
Corresponding Authors:  Liu Kai-Xin     E-mail:  kliu@pku.edu.cn

Cite this article: 

Chen Shi-Yang (陈仕洋), Wu Zhen-Wei (武振伟), Liu Kai-Xin (刘凯欣) Atomic diffusion across Ni50Ti50–Cu explosive welding interface:Diffusion layer thickness and atomic concentration distribution 2014 Chin. Phys. B 23 066802

[1] Kacar R and Acarer M 2004 J. Mater. Process. Technol. 152 91
[2] Grignon F, Benson D, Vecchio K S and Meyers M A 2004 Int. J. Impact. Eng. 30 1333
[3] Acarer M, Gulenc B and Findik F 2003 Mater. Design 24 659
[4] Acarer M and Demir B 2008 Mater. Lett. 62 4158
[5] Ashani J Z and Bagheri S M 2009 Materialwiss. Werkst. 40 690
[6] Liu K X, Liu W D, Wang J T, Yan H H, Li X J, Huang Y J, Wei X S and Shen J 2008 Appl. Phys. Lett. 93 081918
[7] Durgutlu A, Gulenc B and Findik F 2005 Mater. Design 26 497
[8] Findik F 2011 Mater. Design 32 1081
[9] Vaidyanathan P V and Ramanathan A 1993 J. Mater. Process. Technol. 38 501
[10] Abe A 1999 J. Mater. Process. Technol. 85 162
[11] Wu F M, Li Q W and Wu Z Q 2000 Chin. Phys. 9 672
[12] Cao B, Li G P, Chen X M, Cho S J and Kim H 2008 Chin. Phys. Lett. 25 1400
[13] Akbari Mousavi S A A and Sartangi P F 2008 Mater. Sci. Eng. A: Struct. 494 329
[14] Hokamoto K, Nakata K, Mori A, Ii S, Tomoshige R, Tsuda S, Tsumura T and Inoue A 2009 J. Alloys Compd. 485 817
[15] Shi Y and Falk M L 2008 Acta Mater. 56 995
[16] Cao A J, Cheng Y Q and Ma E 2009 Acta Mater. 57 5146
[17] Sun Y B, Luo Y, Wang X D and Feng Y Q 2011 Adv. Mater. Res. 217-218 45
[18] Şopu D, Ritter Y, Gleiter H and Albe K 2011 Phys. Rev. B 83 100202
[19] Shao J L, Wang P, He A M, Duan S Q and Qin C S 2013 J. Appl. Phys. 113 153501
[20] Verners O, Shin Y K and van Duin A C T 2013 J. Appl. Phys. 114 023501
[21] Chen Z H, Yu Z Y, Lu P F and Liu Y M 2009 Chin. Phys. B 18 4591
[22] Chen S, Ke F, Zhou M and Bai Y 2007 Acta Mater. 55 3169
[23] Delogu F 2010 Phys. Rev. B 82 205415
[24] Zhao S, Germann T and Strachan A 2007 Phys. Rev. B 76 104105
[25] Chen S Y, Wu Z W, Liu K X, Li X J, Luo N and Lu G X 2013 J. Appl. Phys. 113 044901
[26] Plimpton S 1995 J. Comput. Phys. 117 1
[27] Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113
[28] Michal G M and Sinclair R 1981 Acta Crystallogr. B 37 1803
[29] Evans D J and Holian B L H 1985 J. Chem. Phys. 83 4069
[30] Wronka B 2010 J. Mater. Sci. 45 3465
[31] Yan H, Qu Y and Li X 2008 Combust. Explo. Shock+ 44 491
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[5] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[10] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[11] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[12] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[13] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[14] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[15] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
No Suggested Reading articles found!