Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064201    DOI: 10.1088/1674-1056/23/6/064201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance

Hua Li-Li (花丽丽)a, Xu Ning (徐宁)a, Yang Geng (杨庚)b
a College of Opto-Electronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China;
b College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
Abstract  In this paper, we propose an encryption scheme based on phase-shifting digital interferometry. According to the original system framework, we add a random amplitude mask and replace the Fourier transform by the Fresnel transform. We develop a mathematical model and give a discrete formula based on the scheme, which makes it easy to implement the scheme in computer programming. The experimental results show that the improved system has a better performance in security than the original encryption method. Moreover, it demonstrates a good capability of anti-noise and anti-shear robustness.
Keywords:  optical encryption      phase-shifting holography      security      robustness  
Received:  12 August 2013      Revised:  30 October 2013      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  42.15.Eq (Optical system design)  
  42.40.-i (Holography)  
  42.87.Bg (Phase shifting interferometry)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB302903), the National Natural Science Foundation of China (Grant Nos. 61272084 and 61202004), and the Key Project of Natural Science Research of Jiangsu University, China (Grant No. 11KJA520002).
Corresponding Authors:  Xu Ning     E-mail:  xuning@njupt.edu.cn

Cite this article: 

Hua Li-Li (花丽丽), Xu Ning (徐宁), Yang Geng (杨庚) An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance 2014 Chin. Phys. B 23 064201

[1] Javidi B 1997 Phys. Today 50 27
[2] Xu N, Chen X L and Yang G 2013 Acta Phys. Sin. 62 084202 (in Chinese)
[3] Zhao T Y, Liu Q X and Yu F H 2012 Chin. Phys. B 21 064203
[4] Matoba O, Nomura T and Perez-Cabre E, et al. 2009 Proc. IEEE 97 1128
[5] Zhu Y C, Zhang J S and Gong Q H 2008 Chin. Phys. Lett. 25 2037
[6] Refregier P and Javidi B 1995 Opt. Lett. 20 767
[7] Tao R, Lang J and Wang Y 2008 Opt. Lett. 33 581
[8] Hennelly B and Sheridan J T 2003 Opt. Lett. 28 269
[9] Jia L and Liu Z 2009 Acta Photon. Sin. 38 1020 (in Chinese)
[10] Situ G and Zhang J 2004 Opt. Lett. 29 1584
[11] Yamaguchi I and Zhang T 1997 Opt. Lett. 22 1268
[12] Tajahuerce E, Matoba O, Verrall S and Javidi B 2000 Appl. Opt. 39 2313
[13] Javidi B and Nomura T 2000 Opt. Lett. 25 28
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[3] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[4] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[5] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[6] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[7] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[8] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[9] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[10] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[11] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[12] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[13] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[14] The robustness of sparse network under limited attack capacity
Xiao-Juan Wang(王小娟), Mei Song(宋梅), Lei Jin(金磊), Zhen Wang(王珍). Chin. Phys. B, 2017, 26(8): 088901.
[15] Optical encryption scheme based on ghost imaging with disordered speckles
Yu-dong Zhang(张玉东), Sheng-mei Zhao(赵生妹). Chin. Phys. B, 2017, 26(5): 054205.
No Suggested Reading articles found!