Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047809    DOI: 10.1088/1674-1056/23/4/047809
Special Issue: TOPICAL REVIEW — Plasmonics and metamaterials
TOPICAL REVIEW—Plasmonics and metamaterials Prev   Next  

Metamaterials and plasmonics:From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials

Francesco Monticone, Andrea Alú
Department of Electrical and Computer Engineering, The University of Texas at Austin, 1 University Station C0803, Austin, Texas 78712, USA
Abstract  The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way to innovations at an unprecedented level. To capitalize the disruptive potential of this rising field of science and technology, it is important to be able to combine the richness of optical phenomena enabled by nanoplasmonics in order to realize metamaterial components, devices, and systems of increasing complexity. Here, we review a few recent research directions in the field of plasmonic metamaterials, which may foster further advancements in this research area. We will discuss the anomalous scattering features enabled by plasmonic nanoparticles and nanoclusters, and show how they may represent the fundamental building blocks of complex nanophotonic architectures. Building on these concepts, advanced components can be designed and operated, such as optical nanoantennas and nanoantenna arrays, which, in turn, may be at the basis of metasurface devices and complex systems. Following this path, from basic phenomena to advanced functionalities, the field of plasmonic metamaterials offers the promise of an important scientific and technological impact, with applications spanning from medical diagnostics to clean energy and information processing.
Keywords:  plasmonics      metamaterials      nanoparticles      scattering  
Received:  08 January 2014      Revised:  29 January 2014      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  42.25.Fx (Diffraction and scattering)  
Fund: Project supported by the ONR MURI (Grant No. N00014-10-1-0942).
Corresponding Authors:  Andrea Alú     E-mail:
About author:  78.67.Pt; 73.20.Mf; 78.67.Bf; 42.25.Fx

Cite this article: 

Francesco Monticone, Andrea Alú Metamaterials and plasmonics:From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials 2014 Chin. Phys. B 23 047809

[1] Engheta N and Ziolkowski R 2006 Electromagnetic Metamaterials: Physics and Engineering Explorations (Hoboken, NJ: Wiley-IEEE Press)
[2] Engheta N 2002 International Conference on Mathematical Methods in Electromagnetic Theory 1 175
[3] Sihvola A 2007 Metamaterials 1 2
[4] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[5] Veselago V G 1968 Sov. Phys. Uspekhi 10 509
[6] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[7] Born M and Wolf E 2002 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press)
[8] Alù A and Engheta N 2005 Phys. Rev. E 72 16623
[9] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[10] Rainwater D, Kerkhoff A, Melin K, Soric J C, Moreno G and Alù A 2012 New J. Phys. 14 013054
[11] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[12] Alù A 2009 Phys. Rev. B 80 245115
[13] Tretyakov S, Alitalo P, Luukkonen O and Simovski C 2009 Phys. Rev. Lett. 103 103905
[14] Leonhardt U and Philbin T G 2006 New J. Phys. 8 247
[15] Narimanov E E and Kildishev A V. 2009 Appl. Phys. Lett. 95 041106
[16] Smolyaninov I I 2011 Phys. Rev. Lett. 107 253903
[17] Smolyaninov I I and Smolyaninova V N 2013 Is there a metamaterial route to high temperature superconductivity? arXiv: 1311.3277v2 [physics.optics]
[18] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light, 2nd edn. (NJ: Princeton University Press)
[19] Sihvola A 1999 Electromagnetic Mixing Formulas and Applications (London: IEEE Press)
[20] Tretyakov S 2002 Analytical Modeling in Applied Electromagnetics (Norwood: Artech House)
[21] Alù A 2011 Phys. Rev. B 84 075153
[22] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[23] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[24] Alù A and Engheta N 2005 J. Appl. Phys. 97 094310
[25] West J L and Halas N J 2003 Ann. Rev. Biomed. Eng. 5 285
[26] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
[27] Aubry A, Lei D Y, Fernández-Domínguez A I, Sonnefraud Y, Maier S A and Pendry J B 2010 Nano Lett. 10 2574
[28] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[29] Willets K A and Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[30] Argyropoulos C, Chen P Y, Monticone F, D'Aguanno G and Alú A 2012 Phys. Rev. Lett. 108 263905
[31] Alú A and Engheta N 2009 Phys. Rev. Lett. 102 233901
[32] Alú A and Engheta N 2010 Phys. Rev. Lett. 105 263906
[33] Kallos E, Argyropoulos C, Hao Y and Alú A 2011 Phys. Rev. B 84 045102
[34] Monticone F and Alú A 2013 Phys. Rev. X 3 041005
[35] Selvanayagam M and Eleftheriades G V 2013 Phys. Rev. X 3 041011
[36] Chen P Y, Argyropoulos C and Alù A 2013 Phys. Rev. Lett. 111 233001
[37] Alù A and Engheta N 2010 J. Nanophotonics 4 041590
[38] Sipe J and Kranendonk J 1974 Phys. Rev. A 9 1806
[39] Alù A and Engheta N 2008 New J. Phys. 10 115036
[40] Monticone F, Argyropoulos C and Alù A 2013 Phys. Rev. Lett. 110 113901
[41] Foster R M 1924 Bell Syst. Tech. J. 3 259
[42] Argyropoulos C, Monticone F, D'Aguanno G and Alù A 2013 Appl. Phys. Lett. 103 143113
[43] Monticone F, Argyropoulos C and Alù A 2012 Sci. Rep. 2 912
[44] Mackowski D W 1994 J. Opt. Soc. Am. A 11 2851
[45] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[46] Nordlander P, Oubre C, Prodan E, Li K and Stockman M I 2004 Nano Lett. 4 899
[47] Alù A and Engheta N 2008 Phys. Rev. B 78 085112
[48] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[49] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[50] Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and Halas N J 2010 Nano Lett. 10 3184
[51] Wu C, Khanikaev A B, Adato R, Arju N, Yanik A A, Altug H and Shvets G 2012 Nat. Mater. 11 69
[52] Alù A, Salandrino A and Engheta N 2006 Opt. Express 14 1557
[53] Landau L D, Pitaevskii L P and Lifshitz E M 1984 Electrodynamics of Continuous Media (Oxford: Butterworth-Heinemann)
[54] Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G and Capasso F 2010 Science 328 1135
[55] Shafiei F, Monticone F, Le K Q, Liu X X, Hartsfield T, Alù A and Li X 2013 Nat. Nanotechnol. 8 95
[56] Engheta N 2007 Science 317 1698
[57] Brongersma M L and Shalaev V M 2010 Science 328 440
[58] Engheta N, Salandrino A and Alù A 2005 Phys. Rev. Lett. 95 095504
[59] Alu A and Engheta N 2011 Proc. IEEE 99 1669
[60] Pozar D M 2011 Microwave Engineering, 3rd edn. (New York: Wiley)
[61] Sun Y, Edwards B, Alù A and Engheta N 2012 Nat. Mater. 11 208
[62] Shi J, Elias S, Monticone F, Wu Y, Ratchford D, Li X and Alú A 2014 Modular Assembly of Optical Nanocircuits under review, 2014
[63] Liu N, Wen F, Zhao Y, Wang Y, Nordlander P, Halas N J and Alù A 2013 Nano Lett. 13 142
[64] Alù A and Engheta N 2008 Nat. Photonics 2 307
[65] Brongersma M L 2008 Nat. Photonics 2 270
[66] Monticone F, Estakhri N M and Alù A 2013 Phys. Rev. Lett. 110 203903
[67] Walther C, Scalari G, Amanti M I, Beck M and Faist J 2010 Science 327 1495
[68] Alù A and Engheta N 2009 Phys. Rev. Lett. 103 143902
[69] Agio M and Alú A 2013 Optical Antennas (New York: Cambridge University Press)
[70] Palomba S, Danckwerts M and Novotny L 2009 J. Opt. A: Pure Appl. Opt. 11 114030
[71] Chen P Y and Alù A 2010 Phys. Rev. B 82 235405
[72] Chen P Y, Argyropoulos C and Alù A 2012 Nanophotonics 1 221
[73] Greffet J J 2005 Science 308 1561
[74] Mühlschlegel P, Eisler H J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607
[75] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[76] Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S and Brongersma M L 2010 Nano Lett. 10 439
[77] Zhu H, Yi F and Cubukcu E 2012 IEEE Photonics Technol. Lett. 24 1194
[78] Alù A and Engheta N 2010 Phys. Rev. Lett. 104 213902
[79] Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402
[80] Oliner A A 1984 IEEE Trans. Microw. Theory Tech. 32 1022
[81] Balanis C A 2005 Antenna Theory: Analysis and Design (New York: Wiley)
[82] Alù A and Engheta N 2008 Phys. Rev. Lett. 101 043901
[83] Alù A and Engheta N 2008 Phys. Rev. B 78 195111
[84] Schuck P J, Fromm D P, Sundaramurthy A, Kino G S and Moerner W E 2005 Phys. Rev. Lett. 94 017402
[85] Li J, Salandrino A and Engheta N 2007 Phys. Rev. B 76 245403
[86] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and van Hulst N F 2010 Science 329 930
[87] Novotny L 2007 Phys. Rev. Lett. 98 266802
[88] Kildishev A V, Boltasseva A and Shalaev V M 2013 Science 339 1232009
[89] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[90] Ni X, Emani N K, Kildishev A V, Boltasseva A and Shalaev V M 2012 Science 335 427
[91] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z and Capasso F 2012 Nano Lett. 12 4932
[92] Ni X, Kildishev A V and Shalaev V M 2013 Nat. Commun. 4 2807
[93] Alù A 2013 Physics 6 53
[94] Pors A, Albrektsen O, Radko I P and Bozhevolnyi S I 2013 Sci. Rep. 3 2155
[95] Sun S, He Q, Xiao S, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[96] Pfeiffer C and Grbic A 2013 Phys. Rev. Lett. 110 197401
[97] Selvanayagam M and Eleftheriades G V. 2013 Opt. Express 21 14409
[98] Pozar D M 1996 Electron. Lett. 32 2109
[99] Monticone F and Alù A 2013 OPN--Year in Optics 24 35
[100] Silva A, Monticone F, Castaldi G, Galdi V, Alù A and Engheta N 2014 Science 343 160
[101] Argyropoulos C, Le K Q, Mattiucci N, D'Aguanno G and Alù A 2013 Phys. Rev. B 87 205112
[102] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[103] Zhao Y and Alù A 2013 Nano Lett. 13 1086
[104] Zhao Y, Belkin M A and Alù A 2012 Nat. Commun. 3 870
[105] Hasman E, Kleiner V, Biener G and Niv A 2003 Appl. Phys. Lett. 82 328
[106] Bliokh K Y, Niv A, Kleiner V and Hasman E 2008 Nat. Photonics 2 748
[107] Yin X, Ye Z, Rho J, Wang Y and Zhang X 2013 Science 339 1405
[108] Chanda D, Shigeta K, Gupta S, Cain T, Carlson A, Mihi A, Baca A J, Bogart G R, Braun P and Rogers J A 2011 Nat. Nanotechnol. 6 402
[109] Li P C and Yu E T 2013 J. Appl. Phys. 114 133104
[110] Mousavi S H, Kholmanov I, Alici K B, Purtseladze D, Arju N, Tatar K, Fozdar D Y, Suk J W, Hao Y, Khanikaev A B, Ruoff R S and Shvets G 2013 Nano Lett. 13 1111
[111] Fleischer K, Arca E, Smith C and Shvets I V. 2012 Appl. Phys. Lett. 101 121918
[112] Wowk B 1996 "Phased Array Optics", in Nanotechnology: Molecular Speculations on Global Abundance (Cambridge: MIT Press)
[1] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[2] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[3] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[4] Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(6): 066201.
[5] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[6] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[7] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[8] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[9] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[10] Evidence of potential change in nonsequential double ionization
Changchun Jia(贾昌春), Pu Zhang(张朴), Hua Wen(文华), and Zhangjin Chen(陈长进). Chin. Phys. B, 2021, 30(2): 023401.
[11] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[12] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[13] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[14] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[15] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
No Suggested Reading articles found!