Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048103    DOI: 10.1088/1674-1056/23/4/048103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An optimized, sensitive and stable reduced graphene oxide-gold nanoparticle-luminol-H2O2 chemiluminescence system and its potential analytical application

Wang Wen-Shuo (王闻硕)a, He Da-Wei (何大伟)a, Wang Ji-Hong (王继红)b, Duan Jia-Hua (段嘉华)a, Peng Hong-Shang (彭洪尚)a, Wu Hong-Peng (吴洪鹏)a, Fu Ming (富鸣)a, Wang Yong-Sheng (王永生)a, Zhang Xi-Qing (张希清)a
a Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China;
b School of Science, China University of Petroleum, Beijing 102249, China
Abstract  The chemiluminescence (CL) performance of luminol is improved using reduced graphene oxide/gold nanoparticle (rGO-AuNP) nano-composites as catalyst. To prepare this catalyst, we propose a linker free, one-step method to in-situ synthesize rGO-AuNP nano-composites. Various measurements are utilized to characterize the resulting rGO-AuNP samples, and it is revealed that rGO could improve the stability and conductivity. Furthermore, we investigate the CL signals of luminal catalyzed by rGO-AuNP. Afterwards, the size effect of particle and the assisted enhancement effect of rGO are studied and discussed in detail. Based on the discussion, an optimal, sensitive and stable rGO-AuNP-luminon-H2O2 CL system is proposed. Finally, we utilize the system as a sensor to detect hydrogen peroxide and organic compounds containing amino, hydroxyl, or thiol groups. The CL system might provide a more attractive platform for various analytical devices with CL detection in the field of biosensors, bioassays, and immunosensors.
Keywords:  graphene      nanoparticles      chemiluminescence      biosensers  
Received:  12 September 2013      Revised:  30 October 2013      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.60.Ps (Chemiluminescence)  
  87.85.fk (Biosensors)  
Fund: Project supported by the National Key Basic Research Program, China (Grant Nos. 2011CB932700 and 2011CB932703), the National Natural Science Foundation of China (Grant Nos. 61378073, 61335006, 91123025, and 61077044), and the Beijing Natural Science FundProject, China (Grant No. 4132031).
Corresponding Authors:  He Da-Wei, Zhang Xi-Qing     E-mail:  dwhe@bjtu.edu.cn;xqzhang@bjtu.edu.cn
About author:  81.05.ue; 78.67.Bf; 78.60.Ps; 87.85.fk

Cite this article: 

Wang Wen-Shuo (王闻硕), He Da-Wei (何大伟), Wang Ji-Hong (王继红), Duan Jia-Hua (段嘉华), Peng Hong-Shang (彭洪尚), Wu Hong-Peng (吴洪鹏), Fu Ming (富鸣), Wang Yong-Sheng (王永生), Zhang Xi-Qing (张希清) An optimized, sensitive and stable reduced graphene oxide-gold nanoparticle-luminol-H2O2 chemiluminescence system and its potential analytical application 2014 Chin. Phys. B 23 048103

[1] White E H and Harding M J C 1964 J. Am. Chem. Soc. 86 5686
[2] Isacsson U and Wettermark G 1974 Anal. Chim. Acta 68 339
[3] Edwards J, Sprung R, Sprague R and Spence D 2001 Analyst. 126 1257
[4] Pérez-Ruiz T, Martínez-Lozano C, Tomás V and Martín J 2003 Anal. Bioanal. Chem. 377 189
[5] Marquette C A and Blum L J 2006 Anal. Bioanal. Chem. 385 546
[6] Guo J Z, Cui H, Zhou W and Wang W 2008 J. Photoch. Photobio. A 193 89
[7] Leff D V, Brandt L and Heath J R 1996 Langmuir 12 4723
[8] Sastry M, Kumar A and Mukherjee P 2001 Colloid. Surface A 181 255
[9] Safavi A, Absalan G and Bamdad F 2008 Anal. Chim. Acta 610 243
[10] Bi S, Yan Y, Yang X and Zhang S 2009 Chem-Eur. J. 15 4704
[11] Xiang Y J, Wu X C, Liu D F, Zhang Z X, Song L, Zhao X W, Liu L F, Luo S D, Ma W J, Shen J, Zhou W Y, Zhou J J, Wang C Y and Wang G 2006 Chin. Phys. 15 2080
[12] Wang W S, He D W, Duan J H, Wang S F, Peng H S, Wu H P, Fu M, Wang Y S and Zhang X Q 2013 Chem. Phys. Lett. 582 119
[13] Duan J H, He D W, Wang W S, Liu Y C, Wu H P, Wang Y S and Fu M 2013 Chem. Phys. Lett. 574 83
[14] Tian D, Duan C, Wang W and Cui H 2010 Biosens. Bioelectron. 25 2290
[15] Li Q, Liu F, Lu C and Lin J M 2011 J. Phys. Chem. C 115 10964
[16] Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev. 39 228
[17] Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'homme R K, Car R, Saville D A and Aksay I A 2006 J. Phys. Chem. B 110 8535
[18] Le Z G, Liu Z R, Qian Y and Wang C Y 2012 Appl. Surf. Sci. 258 5348
[19] Xue Y, Zhao H, Wu Z, Li X, He Y and Yuan Z 2011 Biosens. Bioelectron. 29 102
[20] Mao F, Zhang C, Zhang Y W and Zhang F S 2012 Chin. Phys. Lett. 29 076101
[21] Deng P F, Lei T M, Lu J J, Liu F Y, Zhang Y M, Guo H, Zhang Y M, Wang Y H and Tang X Y 2013 Chin. Phys. Lett. 30 018101
[22] Goncalves G, Marques P A A P, Granadeiro C M, Nogueira H I S, Singh M K and Grácio J 2009 Chem. Mater. 21 4796
[23] Fu X, Bei F, Wang X, O'Brien S and Lombardi J R 2010 Nanoscale 2 1461
[24] Lee Y H, Polavarapu L, Gao N, Yuan P and Xu Q H 2012 Langmuir 28 321
[25] Hummers W S Jr and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[26] Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217
[27] Sun Z, Yan Z, Yao J, Beitler E, Zhu Y and Tour J M 2010 Nature 468 549
[28] Wu P, Shao Q, Hu Y, Jin J, Yin Y and Zhang H 2010 Electrochim. Acta 55 8606
[29] Zhang J, Yang H, Shen G, Cheng P, Zhang J and Guo S 2010 Chem. Commun. 46 1112
[30] Suo S, Wen D, Zhai Y, Dong S and Wang E 2010 ACS Nano 4 3959
[31] Han J, Zhuo Y, Y Q Chai, Mao L, Yuan Y L and Yuan R 2011 Talanta 85 130
[32] Mao Y, Bao Y, Wang W, Li Z, Li F and Niu L Niu 2011 Talanta 85 2106
[33] Loh K P, Bao Q, Ang P K and Yang J 2010 J. Mater. Chem. 20 2277
[34] Kuila T, Bose S, Mishra A K, Khanra P, Kim N H and Lee J H 2012 Prog. Mater. Sci. 57 1061
[35] Zhang Z F, Cui H, Lai C Z and Liu L J 2005 Anal. Chem. 77 3324
[36] Sharma R K, Sharma P and Maitra A 2003 J. Collid Interf. Sci. 265 134
[37] Henglein A 1993 J. Phys. Chem. 97 5457
[38] Wang D M, Zhang Y, Zheng L L, Yang X X, Wang Y and Huang C Z 2012 J. Phys. Chem. C 116 21622
[39] Wang L, Yang P, Li Y, Chen H, Li M and Luo F 2007 Talanta 72 1066
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[12] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[13] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[14] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[15] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
No Suggested Reading articles found!