Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047306    DOI: 10.1088/1674-1056/23/4/047306

Enhanced light absorption of silicon in the near-infrared band by designed gold nanostructures

Liu Ju, Zhong Xiao-Lan, Li Zhi-Yuan
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A scheme to enhance near-infrared band absorption of a Si nanoparticle by placing the Si nanoparticle into a designed gold nanostructure is proposed. Three-dimensional (3D) finite-difference time-domain simulations are employed to calculate the absorption spectrum of the Si nanostructure and maximize it by generating alternate designs. The results show that in the near-infrared region over 700 nm, the absorption of a pure Si nanoparticle is very low, but when the same nanoparticle is placed within an optimally designed gold nanostructure, its absorption cross section can be enhanced by more than two orders of magnitude in the near-infrared band.
Keywords:  surface plasmon resonance      near-infrared      silicon absorption      finite-difference time-domain optimization  
Received:  21 October 2013      Revised:  05 December 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant No. 2013CB632704) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y1 V2013L11).
Corresponding Authors:  Li Zhi-Yuan     E-mail:
About author:  73.20.Mf; 78.67.Bf; 78.20.Bh

Cite this article: 

Liu Ju, Zhong Xiao-Lan, Li Zhi-Yuan Enhanced light absorption of silicon in the near-infrared band by designed gold nanostructures 2014 Chin. Phys. B 23 047306

[1] Dubbs T, Kroeger W, Nissen T, Pulliam T, Roberts D, Rowe W A, Sadrozinski H F W, Seiden A, Thomas B, Webster A and Alers G 1999 IEEE Trans. Nucl. Sci. 46 839
[2] Huang Y P, Velev V and Kumar P 2013 Opt. Lett. 38 2119
[3] Yang J, Banerjee A and Guha S 1997 Appl. Phys. Lett. 70 2975
[4] Tsu D V, Chao B S, Ovshinsky S R, Guha S and Yang J 1997 Appl. Phys. Lett. 71 1317
[5] Cui Y and Lieber C M 2001 Science 291 851
[6] Kovalev D and Fujii M 2005 Adv. Mater. 17 2531
[7] Zhang X M, Neiner D, Wang S Z, Louie A Y and Kauzlarich S M 2007 Nanotechnology 18 095601
[8] Jakubek J 2009 J. Instrum. 4 P03013
[9] Adam W et al. 2000 Nucl. Instrum. Methods Phys. Res. A 453 141
[10] Love S A, Marquis B J and Haynes C L 2008 Appl. Spectrosc. 62 346a
[11] Chen Y H, Fu J X and Li Z Y 2011 Opt. Express 19 23908
[12] Homola J, Yee S S and Gauglitz G 1999 Sens. Actuators B Chem. 54 3
[13] Ferry V E, Sweatlock L A, Pacifici D and Atwater H A 2008 Nano Lett. 8 4391
[14] Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photonics 2 351
[15] Palomba S and Novotny L 2008 Phys. Rev. Lett. 101 056802
[16] Loo C, Lowery A, Halas N J, West J and Drezek R 2005 Nano Lett. 5 709
[17] Zhong X L and Li Z Y 2012 J. Phys. Chem. C 116 21547
[18] Li Z Y 2012 Front. Phys. 7 601
[19] Novotny L and Van Hulst N 2011 Nat. Photonics 5 83
[20] Tang L, Kocabas S E, Latif S, Okyay A K, Ly-Gagnon D S, Saraswat K C and Miller D A B 2008 Nat. Photonics 2 226
[21] Cao L Y, Park J S, Fan P Y, Clemens B and Brongersma M L 2010 Nano Lett. 10 1229
[22] Cubukcu E, Kort E A, Crozier K B and Capasso F 2006 Appl. Phys. Lett. 89 093120
[23] Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
[24] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
[25] Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
[26] Hoppener C and Novotny L 2008 Nano Lett. 8 642
[27] Van Zanten T S, Lopez-Bosque M J and Garcia-Parajo M F 2010 Small 6 270
[28] Thompson A B and Sevick-Muraca E M 2003 J. Biomed. Opt. 8 111
[29] Siddiqi M A, Kilduff G M and Gearhart J D 2003 J. Microsc-Oxford 212 132
[30] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[31] Taflove A 1995 Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3nd edn. (Norwood, MA: Artech House) pp. 475-506
[32] Palik E D 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press) pp. 547-569
[33] Liu N, Tang M L, Hentschel M, Giessen H and Alivisatos A P 2011 Nat. Mater. 10 631
[34] Dong J, Qu S X, Zhang Z L, Liu M C, Liu G N, Yan X Q and Zheng H R 2012 J. Appl. Phys. 111 093101
[35] Davis T J, Hentschel M, Liu N and Giessen H 2012 ACS Nano 6 1291
[36] Ibrahim I A, Mivelle M, Grosjean T, Allegre J T, Burr G W and Baida F I 2010 Opt. Lett. 35 2448
[37] Jin N and Rahmat-Samii Y 2005 IEEE Trans. Antennas Propag. 53 3459
[38] Burr G W and Farjadpour A 2005 Proc. SPIE: Conference on Photonic Crystal Materials and Devices III, January 24-27, 2005, San Jose, CA, USA, p. 336
[39] Robinson J and Rahmat-Samii Y 2004 IEEE Trans. Antenn. Propag. 52 397
[40] Trelea I C 2003 Inf. Process. Lett. 85 317
[41] Mutitu J G, Shi S Y, Chen C H, Creazzo T, Barnett A, Honsberg C and Prather D W 2008 Opt. Express 16 15238
[42] Shokooh-Saremi M and Magnusson R 2010 Opt. Lett. 35 1121
[43] Magnusson R, Shokooh-Saremi M and Johnson E G 2010 Opt. Lett. 35 2472
[1] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[2] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[3] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[4] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[5] Fiber cladding SPR bending sensor characterized by two parameters
Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yong Wei(魏勇), Yudong Su(苏于东), Ping Wu(吴萍), Lingling Li(李玲玲), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2020, 29(12): 120701.
[6] Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), and Jin-Ze Li(李金泽)$. Chin. Phys. B, 2020, 29(11): 110701.
[7] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[8] Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes
Haochen Liu(刘皓宸), Huaying Zhong(钟华英), Fankai Zheng(郑凡凯), Yue Xie(谢阅), Depeng Li(李德鹏), Dan Wu(吴丹), Ziming Zhou(周子明), Xiao-Wei Sun(孙小卫), Kai Wang(王恺). Chin. Phys. B, 2019, 28(12): 128504.
[9] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[10] Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene
Qi You(游琪), Leyong Jiang(蒋乐勇), Xiaoyu Dai(戴小玉), Yuanjiang Xiang(项元江). Chin. Phys. B, 2018, 27(9): 094211.
[11] Optoelectronic properties of single-crystalline GaInAsSb quaternary alloy nanowires
Meng-Zi Li(李梦姿), Xin-Liang Chen(陈新亮), Hong-Lai Li(李洪来), Xue-Hong Zhang(张学红), Zhao-Yang Qi(祁朝阳), Xiao-Xia Wang(王晓霞), Peng Fan(范鹏), Qing-Lin Zhang(张清林), Xiao-Li Zhu(朱小莉), Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2018, 27(7): 078101.
[12] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[13] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[14] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[15] Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application
Qi Li(李琦), Bing-qiang Yu(于兵强), Zhao-feng Li(李兆峰), Xiao-feng Wang(王晓峰), Zi-chen Zhang(张紫辰), Ling-feng Pan(潘岭峰). Chin. Phys. B, 2017, 26(8): 085202.
No Suggested Reading articles found!