Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047305    DOI: 10.1088/1674-1056/23/4/047305
Special Issue: TOPICAL REVIEW — Plasmonics and metamaterials
TOPICAL REVIEW—Plasmonics and metamaterials Prev   Next  

Manipulation of plasmonic wavefront and light-matter interaction in metallic nanostructures:A brief review

Li Jia-Fang, Li Zhi-Yuan
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The control and application of surface plasmons (SPs), is introduced with particular emphasis on the manipulation of the plasmonic wavefront and light-matter interaction in metallic nanostructures. We introduce a direct design methodology called the surface wave holography method and show that it can be readily employed for wave-front shaping of near-infrared light through a subwavelength hole, it can also be used for designing holographic plasmonic lenses for SPs with complex wavefronts in the visible band. We also discuss several issues of light-matter interaction in plasmonic nanostructures. We show theoretically that amplification of SPs can be achieved in metal nanoparticles incorporated with gain media, leading to a giant reduction of surface plasmon resonance linewidth and enhancement of local electric field intensity. We present an all-analytical semiclassical theory to evaluate spaser performance in a plasmonic nanocavity incorporated with gain media described by the four-level atomic model. We experimentally demonstrate amplified spontaneous emission of SP polaritons and their amplification at the interface between a silver film and a polymer film doped with dye molecules. We discuss various aspects of microscopic and macroscopic manipulation of fluorescent radiation from gold nanorod hybrid structures in a system of either a single nanoparticle or an aligned group of nanoparticles. The findings reported and reviewed here could help others explore various approaches and schemes to manipulate plasmonic wavefront and light-matter interaction in metallic nanostructures for potential applications, such as optical displays, information integration, and energy harvesting technologies.
Keywords:  surface plasmons      surface wave holography      surface plasmon amplification      fluorescence enhancement      gold nanorods  
Received:  27 November 2013      Revised:  24 December 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB632704 and 2013CB922404), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W02), and the National Natural Science Foundation of China (Grant Nos. 11104342 and 11374357).
Corresponding Authors:  Li Jia-Fang, Li Zhi-Yuan     E-mail:;
About author:  73.20.Mf; 41.20.Jb; 78.67.-n; 42.60.Da

Cite this article: 

Li Jia-Fang, Li Zhi-Yuan Manipulation of plasmonic wavefront and light-matter interaction in metallic nanostructures:A brief review 2014 Chin. Phys. B 23 047305

[1] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
[2] Willets K A and Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[3] Yu N F, Fan J, Wang Q J, Pflugl C, Diehl L, Edamura T, Yamanishi M, Kan H and Capasso F 2008 Nat. Photon. 2 564
[4] Chen K H, Hobley J, Foo Y L and Su X D 2011 Lab Chip 11 1895
[5] Hu M, Chen J Y, Li Z Y, Au L, Hartland G V, Li X D, Marquez M and Xia Y N 2006 Chem. Soc. Rev. 35 1084
[6] Huang X H, Neretina S and El-Sayed M A 2009 Adv. Mater. 21 4880
[7] Castaneda M T, Alegret S and Merkoci A 2007 Electroanalysis 19 743
[8] Li X, Lan T H, Tien C H and Gu M 2012 Nat. Commun. 3 998
[9] Zijlstra P, Chon J W M and Gu M 2009 Nature 459 410
[10] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[11] Yu Z Z, Wang Z B, Zhao J M and Jiang T 2013 Chin. Phys. B 22 34102
[12] Ebbesen T W and Genet C 2007 Nature 445 39
[13] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[14] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbesen T W 2002 Science 297 820
[15] Srituravanich W, Fang N, Sun C, Luo Q and Zhang X 2004 Nano Lett. 4 1085
[16] Lee B, Kim S, Kim H and Lim Y 2010 Prog. Quantum Electron. 34 47
[17] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Degiron A and Ebbesen T W 2003 Phys. Rev. Lett. 90 167401
[18] Cowan J J 1974 J. Opt. Soc. Am. 64 563
[19] Maruo S, Nakamura O and Kawata S 1997 Appl. Opt. 36 2343
[20] Kawata S, Ozaki M O and Kato J 2011 Science 332 218
[21] Cowan J J 1974 Opt. Commun. 12 373
[22] Chen Y H, Fu J X and Li Z Y 2011 Opt. Express 19 23908
[23] Born M and Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (New York: Cambridge University Press)
[24] Bethe H A 1944 Phys. Rev. 66 163
[25] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
[26] Shinada S, Koyama F, Nishiyama N, Arai M, Goto K and Iga K 1999 Jpn. J. Appl. Phys. 238 L1327
[27] Yu N F, Wang Q J and Capasso F 2012 Laser Photon. Rev. 6 24
[28] Jun Y C, Huang K C Y and Brongersma M L 2011 Nat. Commun. 2 283
[29] Chen Y H, Huang L, Gan L and Li Z Y 2012 Light-Sci. Appl. 1 e26
[30] Drezet A, Genet C and Ebbesen T W 2008 Phys. Rev. Lett. 101 043902
[31] Lin L, Goh X M, McGuinness L P and Roberts A 2010 Nano Lett. 10 1936
[32] Chen Y H, Zhang M Q, Gan L, Wu X Y, Sun L, Liu J, Wang J and Li Z Y 2013 Opt. Express 21 17558
[33] Ming T, Zhao L, Yang Z, Chen H J, Sun L D, Wang J F and Yan C H 2009 Nano Lett. 9 3896
[34] Chen H J, Ming T A, Zhao L, Wang F, Sun L D, Wang J F and Yan C H 2010 Nano Today 5 494
[35] Gordon J A and Ziolkowski R W 2007 Opt. Express 15 2622
[36] Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photon. 2 351
[37] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[38] Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M and Mulvaney P 2005 Coord. Chem. Rev. 249 1870
[39] Li J, Liu S, Liu Y, Zhou F and Li Z Y 2010 Appl. Phys. Lett. 96 263103
[40] Oldenburg S J, Averitt R D, Westcott S L and Halas N J 1998 Chem. Phys. Lett. 288 243
[41] Liu S Y, Li J F, Zhou F, Gan L and Li Z Y 2011 Opt. Lett. 36 1296
[42] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[43] Li Z Y and Xia Y N 2010 Nano Lett. 10 243
[44] Chen J, Saeki F, Wiley B J, Cang H, Cobb M J, Li Z Y, Au L, Zhang H, Kimmey M B, Li X D and Xia Y N 2005 Nano Lett. 5 473
[45] Zhou F, Li Z Y, Liu Y and Xia Y N 2008 J. Phys. Chem. C 112 20233
[46] Zhong X L and Li Z Y 2013 Phys. Rev. B 88 085101
[47] Maier S A 2006 Plasmonics: Fundamentals and Applications (New York: Springer)
[48] Piliarik M and Homola J 2009 Opt. Express 17 16505
[49] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[50] Seidel J, Grafstrom S and Eng L 2005 Phys. Rev. Lett. 94 177401
[51] Bolger P M, Dickson W, Krasavin A V, Liebscher L, Hickey S G, Skryabin D V and Zayats A V 2010 Opt. Lett. 35 1197
[52] Ambati M, Nam S H, Ulin-Avila E, Genov D A, Bartal G and Zhang X 2008 Nano Lett. 8 3998
[53] Noginov M A, Zhu G, Mayy M, Ritzo B A, Noginova N and Podolskiy V A 2008 Phys. Rev. Lett. 101 226806
[54] Chen Y H, Li J F, Ren M L, Wang B L, Fu J X, Liu S Y and Li Z Y 2011 Appl. Phys. Lett. 98 261912
[55] Popov O, Lirtsman V and Davidov D 2009 Appl. Phys. Lett. 95 191108
[56] Noginov M A, Zhu G, Mayy M, Ritzo B A, Noginova N and Podolskiy V A 2008 Phys. Rev. Lett. 101 226806
[57] Chen Y H, Li J F, Ren M L and Li Z Y 2012 Small 8 1355
[58] Liu S Y, Huang L, Li J F, Wang C, Li Q, Xu H X, Guo H L, Meng Z M, Shi Z and Li Z Y 2013 J. Phys. Chem. C 117 10636
[59] Li X, Kao F J, Chuang C C and He S L 2010 Opt. Express 18 11335
[60] Chen Y, Munechika K and Ginger D S 2007 Nano Lett. 7 690
[61] Liaw J W and Tsai H Y 2012 J. Quantum Spectrosc. Rad. 113 470
[62] Xia Y N and Halas N J 2005 MRS Bull. 30 338
[63] Gindy M E and Prud'homme R K 2009 Expert Opin. Drug Del. 6 865
[64] Liu S Y, Li J F and Li Z Y 2013 Adv. Opt. Mater. 1 227
[65] Fornasiero D and Grieser F 1987 Chem. Phys. Lett. 139 103
[1] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[2] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[3] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[4] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[5] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[6] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[7] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[8] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[9] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[10] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
[11] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[12] Excitation of anti-symmetric coupled spoof SPPs in 3D SIS waveguides based on coupling
Li-li Tian(田莉莉), Yang Chen(陈杨), Jian-long Liu(刘建龙), Kai Guo(郭凯), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2016, 25(7): 078401.
[13] Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁). Chin. Phys. B, 2016, 25(7): 077301.
[14] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
[15] Fano resonance and magneto-optical Kerr rotaion in periodic Co/Ni complex plasmonic nanostructure
Le-Yi Chen(陈乐易), Zhi-Xiong Tang(唐志雄), Jin-Long Gao(高锦龙), Dao-Yong Li(李道勇), Cheng-Xin Lei(类成新), Zhen-Zhi Cheng(程振之), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2016, 25(11): 113301.
No Suggested Reading articles found!